Previous Chapter: Closing Thoughts
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

References

Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America 113(42):11770-11775. https://doi.org/10.1073/pnas.1607171113.

Abatzoglou, J. T., D. S. Battisti, A. P. Williams, W. D. Hansen, B. J. Harvey, and C. A. Kolden. 2021. Projected increases in western US forest fire despite growing fuel constraints. Communications Earth & Environment 2(1):227. https://doi.org/10.1038/s43247-021-00299-0.

Alencar, A., P. Moutinho, V. Arruda, and D. Silvério. 2020. Amazonas em chamas—O fogo e o desmatamento me 2019 e o que vem em 2020. Nota técnica no. 3. Brasília: Instituto de Pesquisa Ambiental da Amazônia. https://ipam.org.br/bibliotecas/amazoniaem-chamas3-o-fogo-e-o-desmatamentoem-2019-e-o-que-ve—-em-2020.

Anderson, L. O., C. Burton, J. B. C. dos Reis, A. C. M. Pessôa, P. Bett, N. S. Carvalho, C. H. L. Silva, Jr., K. Williams, G. Selaya, D. Armenteras, B. A. Bilbao, H. A. M. Xaud, R. Rivera-Lombardi, J. Ferreira, L. E. O. C. Aragão, C. D. Jones, and A. J. Wiltshire. 2022. An alert system for seasonal fire probability forecast for South American protected areas. Climate Resilience and Sustainability 1(1):e19. https://doi.org/10.1002/cli2.19.

Archibald, S., C. E. R. Lehmann, J. L. Gómez-Dans, and R. A. Bradstock. 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America 110(16):6442-6447. https://doi.org/10.1073/pnas.1211466110.

Balch, J. K., P. M. Brando, D. C. Nepstad, M. T. Coe, D. Silvério, T. J. Massad, E. A. Davidson, P. Lefebvre, C. Oliveira-Santos, W. Rocha, R. T. S. Cury, A. Parsons, and K. S. Carvalho. 2015. The susceptibility of southeastern Amazon forests to fire: Insights from a large-scale burn experiment. BioScience 65(9):893-905. https://doi.org/10.1093/biosci/biv106.

Bernier, P. Y., S. Gauthier, P.-O. Jean, F. Manka, Y. Boulanger, A. Beaudoin, and L. Guindon. 2016. Mapping local effects of forest properties on fire risk across Canada. Forests 7(8):157. https://doi.org/10.3390/f7080157.

Bilbao, B., A. Leal, C. Méndez, and M. D. Delgado-Cartay. 2009. The role of fire in the vegetation dynamics of upland savannas of the Venezuelan Guayana. In Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics, M. A. Cochrane, ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 451-480.

Bilbao, B. A., A. V. Leal, and C. L. Méndez. 2010. Indigenous use of fire and forest loss in Canaima National Park, Venezuela. Assessment of and tools for alternative strategies of fire management in Pemón Indigenous lands. Human Ecology 38(5):663-673. https://doi.org/10.1007/s10745-010-9344-0.

Bilbao, B., J. Rosales, S. Marin, A. Millan, R. Salazar-Gascon, H. Chani, F. Pérez, A. Leal, C. Méndez, D. Delgado-Cartay, M. Márquez, M. Alvarado, E. Deza, Z. Hasmy, F. Lambos, I. Lanz, R. Machuca, M. Parra, E. P. P. Castellanos, G. P. Nava, F. Reyes, D. Rodriguez, H. Manuel, H. M. Rodriguez Salcedo, B. Sanchez, and E. Zambrano. 2017. Chureta ru to pomupök integration of indigenous and ecological knowledge for the restoration of de-

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

graded environments. In Beyond Restoration Ecology: Social Perspectives in Latin America and the Caribbean, E. Ceccon and D. Perez, eds. Buenos Aires: Vazquez Mazzini Editores, pp. 331-353.

Bilbao, B. A., A. Millán, H. Vessuri, J. Mistry, R. Salazar-Gascón, and R. Gómez. 2021. To burn or not to burn? The history behind the construction of a new paradigm of fire management in Venezuela through interculturality. Biodiversidade Brasileira 11(2):99-127. https://doi.org/10.37002/biodiversidadebrasileira.v11i2.

Bilbao, B. A., A. Millán, M. L. Matany, J. Mistry, R. Gómez-Martínez, R. Rivera-Lombardi, C. Méndez-Vallejo, E. León, J. G. Biskis Ardila, G. Gutiérrez, E. G. León, and B. Ancidey. 2022. An intercultural vision for integrated fire management in Venezuela. Tropical Forest Issues 61:39-46. https://doi.org/10.55515/CNUU7417.

Boisramé, G., S. Thompson, B. Collins, and S. Stephens. 2017. Managed wildfire effects on forest resilience and water in the Sierra Nevada. Ecosystems 20(4):717-732. https://doi.org/10.1007/s10021-016-0048-1.

Bond, W. J., F. I. Woodward, and G. F. Midgley. 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165: 525-538. https://doi.org/10.1111/j.14698137.2004.01252.x.

Bowman, D. M. J. S., G. J. Williamson, J. T. Abatzoglou, C. A. Kolden, M. A. Cochrane, and A. M. S. Smith. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution 1(3):58. https://doi.org/10.1038/s41559-016-0058.

Bowman, D. M. J. S., G. J. Williamson, M. Ndalila, S. H. Roxburgh, S. Suitor, and R. J. Keenan. 2023. Wildfire national carbon accounting: How natural and anthropogenic landscape fires emissions are treated in the 2020 Australian government greenhouse gas accounts report to the UNFCCC. Carbon Balance and Management 18(1):14. https://doi.org/10.1186/s13021-023-00231-3.

Bradstock, R. A., G. J. Cary, I. Davies, D. B. Lindenmayer, O. F. Price, and R. J. Williams. 2012. Wildfires, fuel treatment and risk mitigation in Australian eucalypt forests: Insights from landscape-scale simulation. Journal of Environmental Management 105:66-75. https://doi.org/10.1016/j.jenvman.2012.03.050.

Burton, C., S. Lampe, D. Kelley, W. Thiery, S. Hantson, N. Christidis, L. Gudmundson, M. Forrest, E. Burke, J. Chang, H. Huang, A. Ito, S. Kou-Giesbrecht, G. Lasslop, W. Li, L. Nieradzik, F. Li, Y. Chen, J. Randerson, C. Reyer, and M. Mengel. 2023. Global burned area increasingly explained by climate change. Research Square, preprint. https://doi.org/10.21203/rs.3.rs-3168150/v1.

Calkin, D. E., K. Barrett, J. D. Cohen, M. A. Finney, S. J. Pyne, and S. L. Quarles. 2023. Wildland-urban fire disasters aren’t actually a wildfire problem. Proceedings of the National Academy of Sciences of the United States of America 120(51):e2315797120. https://doi.org/10.1073/pnas.2315797120.

Castanho, A. D., M. T. Coe, P. Brando, M. Macedo, A. Baccini, W. Walker, and E. M. Andrade. 2020. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environmental Research Letters 15(3):034053. https://doi.org/10.1088/1748-9326/ab7394.

Chapin, F. S., S. R. Carpenter, G. P. Kofinas, C. Folke, N. Abel, W. C. Clark, P. Olsson, D. M. S. Smith, B. Walker, O. R. Young, F. Berkes, R. Biggs, J. M. Grove, R. L. Naylor, E. Pinkerton, W. Steffen, and F. J. Swanson. 2010. Ecosystem stewardship: Sustainability

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

strategies for a rapidly changing planet. Trends in Ecology & Evolution 25(4):241-249. https://doi.org/10.1016/j.tree.2009.10.008.

Christianson, A. C., C. R. Sutherland, F. Moola, N. Gonzalez Bautista, D. Young, and H. MacDonald. 2022. Centering Indigenous voices: The role of fire in the boreal forest of North America. Current Forestry Reports 8(3):257-276. https://doi.org/10.1007/s40725022-00168-9.

Collins, B. M., J. D. Miller, A. E. Thode, M. Kelly, J. W. van Wagtendonk, and S. L. Stephens. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12:114-128. https://doi.org/10.1007/s10021-008-9211-7.

Crippa, M., D. Guizzardi, M. Muntean, E. Schaaf, E. Solazzo, F. Monforti-Ferrario, J. G. J. Olivier, and E. Vignati. 2020. Fossil CO2 and GHG Emissions of All World Countries: 2020 Report. Luxemberg: Publications Office of the European Union.

Cummins, K., J. Noble, J. M. Varner, K. M. Robertson, J. K. Hiers, H. K. Nowell, and E. Simonson. 2023. The southeastern US prescribed fire permit database: Hot spots and hot moments in prescribed fire across the southeastern USA. Fire 6(10):372. https://doi.org/10.3390/fire6100372.

Dargie, G., S. Lewis, I. Lawson, E. T. A. Mitchard, S. E. Page, Y. E. Bocko, and S. A. Ifo. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86–90. https://doi.org/10.1038/nature21048.

Domke, G. M., B. F. Walters, C. L. Giebink, E. J. Greenfield, J. E. Smith, M. C. Nichols, J. A. Knott, S. M. Ogle, J. W. Coulston, and J. Steller. 2023. Greenhouse Gas Emissions and Removals from Forest Land, Woodlands, Urban Trees, and Harvested Wood Products in the United States, 1990-2021. U.S. Department of Agriculture, Forest Service. http://dx.doi.org/10.2737/WO-RB-101.

Edwards, A., R. Archer, P. De Bruyn, J. Evans, B. Lewis, T. Vigilante, S. Whyte, and J., Russell-Smith. 2021. Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. Journal of Environmental Management 290:112568. https://doi.org/10.1016/j.jenvman.2021.112568.

Environment and Climate Change Canada. 2023. National Inventory Report 1990–2021: Greenhouse Gas Sources and Sinks in Canada. https://unfccc.int/documents/627833.

EPA (U.S. Environmental Protection Agency). 2023. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. EPA 430-R-23-002. Washington, DC: U.S. Environmental Protection Agency. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gasemissions-and-sinks-1990-2021.

Erni, S., D. Arseneault, and M.-A. Parisien. 2018. Stand age influence on potential wildfire ignition and spread in the boreal forest of northeastern Canada. Ecosystems 21(7):1471-1486. https://doi.org/10.1007/s10021-018-0235-3.

Forkel, M., N. Andela, S. P. Harrison, G. Lasslop, M. van Marle, E. Chuvieco, W. Dorigo, M. Forrest, S. Hantson, A. Heil, F. Li, J. Melton, S. Sitch, C. Yue, and A. Arneth. 2019. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16(1):57-76. https://doi.org/10.5194/bg16-57-2019.

French, N. H., and A. T. Hudak. 2023. Biomass burning fuel consumption and emissions for air quality. In Landscape Fire, Smoke, and Health: Linking Biomass Burning Emissions to Human Well-Being, T. V. Loboda, N. H. French, and R. C. Puett, eds. Hoboken, NJ: Wiley.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Gale, M. G. and G. J. Cary. 2021. Stand boundary effects on obligate seeding Eucalyptus delegatensis regeneration and fuel dynamics following high and low severity fire: Implications for species resilience to recurrent fire. Austral Ecology 46(5):802-817. https://doi.org/10.1111/aec.13024.

Genet, H., Y. He, Z. Lyu, A. D. McGuire, Q. Zhuang, J. Clein, D. D’Amore, A. Bennett, A. Breen, F. Biles, E. S. Euskirchen, K. Johnson, T. Kurkowski, S. Schroder, N. Pastick, T. S. Rupp, B. Wylie, Y. Zhang, X. Zhou, and Z. Zhu. 2018. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecological Applications 28(1):5-27. https://doi.org/https://doi.org/10.1002/eap.1641.

Gibson, C. M., L. E. Chasmer, D. K. Thompson, W. L. Quinton, M. D. Flannigan, and D. Olefeldt. 2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nature Communications 9(1):3041. https://doi.org/10.1038/s41467-018-05457-1.

Goodwin, M. J., H. S. Zald, M. P. North, and M. D. Hurteau. 2021. Climate‐driven tree mortality and fuel aridity increase wildfire’s potential heat flux. Geophysical Research Letters 48(24):e2021GL094954. https://doi.org/10.1029/2021GL094954.

Hagmann, R. K., P. F. Hessburg, S. J. Prichard, N. A. Povak, P. M. Brown, P. Z. Fulé, R. E. Keane, E. E. Knapp, J. M. Lydersen, K. L. Metlen, M. J. Reilly, A. J. Sánchez Meador, S. L. Stephens, J. T. Stevens, A. H. Taylor, L. L. Yocom, M. A. Battaglia, D. J. Churchill, L. D. Daniels, D. A. Falk, P. Henson, J. D. Johnston, M. A. Krawchuk, C. R. Levine, G. W. Meigs, A. G. Merschel, M. P. North, H. D. Safford, T. W. Swetnam, and A. E. M. Waltz. 2021. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecological Applications 31(8):e02431. https://doi.org/10.1002/eap.2431.

Hansen, W. D., M. A. Krawchuk, A. T. Trugman, and A. P. Williams. 2022. The Dynamic Temperate and Boreal Fire and Forest-Ecosystem Simulator (DYNAFFOREST): Development and evaluation. Environmental Modelling & Software 156:105473. https://doi.org/10.1016/j.envsoft.2022.105473.

Hantson, S., A. Arneth, S. P. Harrison, D. I. Kelley, I. C. Prentice, S. S. Rabin, S. Archibald, F. Mouillot, S. R. Arnold, P. Artaxo, D. Bachelet, P. Ciais, M. Forrest, P. Friedlingstein, T. Hickler, J. O. Kaplan, S. Kloster, W. Knorr, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, A. Meyn, S. Sitch, A. Spessa, G. R. van der Werf, A. Voulgarakis, and C. Yue. 2016. The status and challenge of global fire modelling. Biogeosciences 13(11):3359-3375. https://doi.org/10.5194/bg-13-3359-2016.

Hantson, S., D. I. Kelley, A. Arneth, S. P. Harrison, S. Archibald, D. Bachelet, M. Forrest, T. Hickler, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, L. Nieradzik, S. S. Rabin, I. C. Prentice, T. Sheehan, S. Sitch, L. Teckentrup, A. Voulgarakis, and C. Yue. 2020. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development 13(7):3299-3318. https://doi.org/10.5194/gmd-13-3299-2020.

Harris, R. M. B., T. A. Remenyi, G. J. Williamson, N. L. Bindoff, and D. M. J. S. Bowman. 2016. Climate–vegetation–fire interactions and feedbacks: Trivial detail or major barrier to projecting the future of the Earth system? WIREs Climate Change 7(6):910-931. https://doi.org/10.1002/wcc.428.

Hessburg, P. F., T. A. Spies, D. A. Perry, C. N. Skinner, A. H. Taylor, P. M. Brown, S. L. Stephens, A. J. Larson, D. J. Churchill, N. A. Povak, P. H. Singleton, B. McComb, W. J. Zielinski, B. M. Collins, R. B. Salter, J. J. Keane, J. F. Franklin, and G. Riegel. 2016.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. Forest Ecology and Management 366:221-250. https://doi.org/10.1016/j.foreco.2016.01.034.

Hessburg, P. F., C. L. Miller, S. A. Parks, N. A. Povak, A. H. Taylor, P. E. Higuera, S. J. Prichard, M. P. North, B. M. Collins, M. D. Hurteau, A. J. Larson, C. D. Allen, S. L. Stephens, H. Rivera-Huerta, C. S. Stevens-Rumann, L. D. Daniels, Z. Gedalof, R. W. Gray, V. R. Kane, D. J. Churchill, R. K. Hagmann, T. A. Spies, C. A. Cansler, R. T. Belote, T. T. Veblen, M. A. Battaglia, C. Hoffman, C. N. Skinner, H. D. Safford, and R. B. Salter. 2019. Climate, environment, and disturbance history govern resilience of western North American forests. Frontiers in Ecology and Evolution 7. https://doi.org/10.3389/fevo.2019.00239.

Hu, Y., N. Fernandez-Anez, T. E. L. Smith, and G. Rein. 2018. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire 27(5):293-312. https://doi.org/10.1071/WF17084.

Hurteau, M. D. 2013. Effects of wildland fire management on forest carbon stores. In Land use and the carbon cycle: Advances in integrated science, management, and policy. D.G. Brown, D.T. Robinson, N.H.F. French, and B.C. Reed, eds. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511894824.

IPCC (Intergovernmental Panel on Climate Change). 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. S. Eggelston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, eds. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, eds. Cambridge, UK, and New York, NY: Cambridge University Press. https://doi.org/10.1017/9781009157896.

Jafarov, E. E., V. E. Romanovsky, H. Genet, A. D. McGuire, and S. S. Marchenko. 2013. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environmental Research Letters 8(3):0350 30. https://doi.org/10.1088/1748-9326/8/3/035030.

Jia, G., E. Shevliakova, P. Artaxo, N. D. Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, and L. Verchot. 2019. Land–climate interactions. In Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, P. R. Shukla, J. Skea, E. C. Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. P. Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley, eds. Cambridg, UK: Cambridge University Press.

Johnstone, J. F., T. S. Rupp, M. Olson, and D. Verbyla. 2011. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology 26(4):487-500. https://doi.org/10.1007/s10980-011-9574-6.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Juang, C. S., A. P. Williams, J. T. Abatzoglou, J. K. Balch, M. D. Hurteau, and M. A. Moritz. 2022. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States. Geophysical Research Letters 49(5):e2021 GL097131. https://doi.org/10.1029/2021GL097131.

Kaiser, J. W., A. Heil, M. O. Andreae, A. Benedetti, N. Chubarova, L. Jones, J. J. Morcrette, M. Razinger, M. G. Schultz, M. Suttie, and G. R. van der Werf. 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9(1):527-554. https://doi.org/10.5194/bg-9-527-2012.

Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences of the United States of America 110(32): 13055-13060. https://doi.org/10.1073/pnas.1305069110.

Kharuk, V. I., M. L. Dvinskaya, S. T. Im, A. S. Golyukov, and K. T. Smith. 2022. Wildfires in the Siberian Arctic. Fire 5(4):106. https://doi.org/10.3390/fire5040106.

Kloster, S., and G. Lasslop. 2017. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Global and Planetary Change 150:58-69. https://doi.org/10.1016/j.gloplacha.2016.12.017.

Koch, A., and J. O. Kaplan. 2022. Tropical forest restoration under future climate change. Nature Climate Change 12(3):279-283. https://doi.org/10.1038/s41558-022-01289-6.

Koplitz, S. N., L. J. Mickley, M. E. Marlier, J. J. Buonocore, P. S. Kim, T. Liu, M. P. Sulprizio, R. S. DeFries, D. J. Jacob, J. Schwartz, M. Pongsiri, and S. S. Myers. 2016. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environmental Research Letters 11(9):094023. https://doi.org/10.1088/1748-9326/11/9/094023.

Kreye, J. K., J. M. Varner, and L. N. Kobziar. 2020. Long-duration soil heating resulting from forest floor duff smoldering in longleaf pine ecosystems. Forest Science 66(3):291-303. https://doi.org/10.1093/forsci/fxz089.

Krofcheck, D. J., C. C. Remy, A. R. Keyser, and M. D. Hurteau. 2019. Optimizing forest management stabilizes carbon under projected climate and wildfires. Journal of Geophysical Research: Biogeosciences 124(10):3075-3087. https://doi.org/10.1029/2019JG005206.

Kruid, S., M. N. Macedo, S. R. Gorelik, W. Walker, P. Moutinho, P. M. Brando, A. Castanho, A. Alencar, A. Baccini, and M. T. Coe. 2021. Beyond deforestation: Carbon emissions from land grabbing and forest degradation in the Brazilian Amazon. Frontiers in Forests and Global Change 4. https://doi.org/10.3389/ffgc.2021.645282.

Lake, F. K., and A. C. Christianson. 2019. Indigenous fire stewardship. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, S. L. Manzello, ed. Cham: Springer International.

Landry, J. S., and H. D. Matthews. 2016. Non-deforestation fire vs. fossil fuel combustion: The source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences 13(7):2137-2149. https://doi.org/10.5194/bg-13-2137-2016.

Larkin, N. K., T. M. Strand, S. A. Drury, S. M. Raffuse, R. C. Solomon, S. M. O’Neill, N. Wheeler, S. Huang, M. Roring, and H. R. Hafner. 2012. Phase 1 of the Smoke and Emissions Model Intercomparison Project (SEMIP): Creation of SEMIP and evaluation of current models. Final Report to the Joint Fire Science Program Project #08-1-6-10.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Leenhouts, B. 1998. Assessment of biomass burning in the conterminous United States. Conservation Ecology 2(1).

Lewis, H. T., and T. A. Ferguson. 1988. Yards, corridors, and mosaics: How to burn a boreal forest. Human Ecology 16(1):57-77. http://www.jstor.org/stable/4602869.

Maclean, K., D. L. Hankins, A. C. Christianson, I. Oliveras, B. A. Bilbao, O. Costello, E. R. Langer, and C. J. Robinson. 2023. Revitalising Indigenous cultural fire practice: Benefits and partnerships. Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2023.07.001.

Melvin, M. A. 2022. 2021 National Prescribed Fire Use Survey Report. Technical Report 01-22. Washington, DC: National Association of State Foresters.

Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. A. G. Schuur. 2015. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest. Ecosystems 18(8):1472-1488. https://doi.org/10.1007/s10021-015-9912-7.

Miettinen, J., C. Shi, and S. C. Liew. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6:67-78. https://doi.org/10.1016/j.gecco.2016.02.004.

Miettinen, J., A. Hooijer, R. Vernimmen, S. C. Liew, and S. E. Page. 2017. From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12(2):024014. https://doi.org/10.1088/1748-9326/aa5b6f.

Nguyen, H. M., J. He, and M. J. Wooster. 2023. Biomass burning CO, PM and fuel consumption per unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and Sentinel-5P CO data. Atmospheric Chemistry and Physics 23(3):2089-2118. https://doi.org/10.5194/acp-23-2089-2023.

Ogle, S. M., G. Domke, W. A. Kurz, M. T. Rocha, T. Huffman, A. Swan, J. E. Smith, C. Woodall, and T. Krug. 2018. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations Framework Convention on Climate Change. Carbon Balance and Management 13(1):9. https://doi.org/10.1186/s13021-0180095-3.

Page, S. E., J. O. Rieley, and C. J. Banks. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17(2):798-818. https://doi.org/10.1111/j.1365-2486.2010.02279.x.

Parks, S. A., C. Miller, M.-A. Parisien, L. M. Holsinger, S. Z. Dobrowski, and J. Abatzoglou. 2015. Wildland fire deficit and surplus in the western United States, 1984–2012. Eco-sphere 6(12):275. http://dx.doi.org/10.1890/ES15-00294.1.

Phillips, C. A., B. M. Rogers, M. Elder, S. Cooperdock, M. Moubarak, J. T. Randerson, and P. C. Frumhoff. 2022. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances 8(17):e abl7161. https://doi.org/10.1126/sciadv.abl7161.

Povak, N. A., P. F. Hessburg, R. B. Salter, R. W. Gray, and S. J. Prichard. 2023. System-level feedbacks of active fire regimes in large landscapes. Fire Ecology 19:45. https://doi.org/10.1186/s42408-023-00197-0.

Prentice, I. C., A. Bondeau, W. Cramer, S. P. Harrison, T. Hickler, W. Lucht, S. Sitch, B. Smith, and M. T. Sykes. 2007. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change. In Terrestrial Ecosystems in a

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Changing World, J. G. Canadell, D. E. Pataki, and L. F. Pitelka, eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 175-192.

Prichard, S. J., C. S. Stevens-Rumann, and P. F. Hessburg. 2017. Tamm review: Shifting global fire regimes: Lessons from reburns and research needs. Forest Ecology and Management 396:217-233. https://doi.org/10.1016/j.foreco.2017.03.035.

Prichard, S. J., E. M. Rowell, A. T. Hudak, R. E. Keane, E. L. Loudermilk, D. C. Lutes, R. D. Ottmar, L. M. Chappell, J. A. Hall, and B. S. Hornsby. 2022. Fuels and consumption. In Wildland Fire Smoke in the United States: A Scientific Assessment, D. L. Peterson, S. M. McCaffrey, and T. Patel-Weynand, eds. Cham: Springer International, pp. 11-49.

Pyne, S. J. 2007. Awful Splendour: A Fire History of Canada. Vancouver, British Columbia, Canada: UBC Press.

Rabin, S. S., J. R. Melton, G. Lasslop, D. Bachelet, M. Forrest, S. Hantson, J. O. Kaplan, F. Li, S. Mangeon, D. S. Ward, C. Yue, V. K. Arora, T. Hickler, S. Kloster, W. Knorr, L. Nieradzik, A. Spessa, G. A. Folberth, T. Sheehan, A. Voulgarakis, D. I. Kelley, I. C. Prentice, S. Sitch, S. Harrison, and A. Arneth. 2017. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development 10(3):1175-1197. https://doi.org/10.5194/gmd-10-1175-2017.

Roos, C. I., C. H. Guiterman, E. Q. Margolis, T. W. Swetnam, N. C. Laluk, K. F. Thompson, C. Toya, C. A. Farris, P. Z. Fulé, J. M. Iniguez, J. M. Kaib, C. D. O’Connor, and L. Whitehair. 2022. Indigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE. Science Advances 8(49):eabq3221. https://doi.org/10.1126/sciadv.abq3221.

Russell-Smith, J., G. D. Cook, P. M. Cooke, A. C. Edwards, M. Lendrum, C. Meyer, and P. J. Whitehead. 2013. Managing fire regimes in north Australian savannas: Applying Aboriginal approaches to contemporary global problems. Frontiers in Ecology and the Environment 11:e55-e63. https://doi.org/10.1890/120251.

Safford, H. D., A. K. Paulson, Z. L. Steel, D. J. N. Young, and R. B. Wayman. 2022. The 2020 California fire season: A year like no other, a return to the past or a harbinger of the future? Global Ecology and Biogeography 31(10):2005-2025. https://doi.org/10.1111/geb.13498.

Sánchez-López, N., A. T. Hudak, L. Boschetti, C. A. Silva, K. Robertson, E. L. Loudermilk, B. C. Bright, M. A. Callaham, and M. K. Taylor. 2023. A spatially explicit model of tree leaf litter accumulation in fire maintained longleaf pine forests of the southeastern US. Ecological Modelling 481:110369. https://doi.org/10.1016/j.ecolmodel.2023.110369.

Sayre, R., D. Karagulle, C. Frye, T. Boucher, N. H. Wolff, S. Breyer, D. Wright, M. Martin, K. Butler, K. Van Graafeiland, and J. Touval. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of world climate regions and world ecosystems. Global Ecology and Conservation 21:e00860. https://doi.org/10.1016/j.gecco.2019.e00860.

Silvério, D. V., R. S. Oliveira, B. M. Flores, P. M. Brando, H. K. Almada, M. T. Furtado, F. G. Moreira, M. Heckenberger, K. Y. Ono, and M. N. Macedo. 2022. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environmental Research Letters 17(4):045012. https://doi.org/10.1088/1748-9326/ac5713.

Sperling, S., M. J. Wooster, and B. D. Malamud. 2020. Influence of satellite sensor pixel size and overpass time on undercounting of Cerrado/Savannah landscape-scale fire radiative

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

power (FRP): An assessment using the MODIS airborne simulator. Fire 3(2):11. https://doi.org/10.3390/fire3020011.

Stephens, S. L., R. E. Martin, and N. E. Clinton. 2007. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. Forest Ecology and Management 251(3):205-216. https://doi.org/10.1016/j.foreco.2007.06.005.

Stephens, S. L., S. Thompson, G. Boisramé, B. M. Collins, L.C. Ponisio, E. Rakhmatulina, Z. L. Steel, J. T. Stevens, J. W. van Wagtendonk, and K. Wilkin, 2021. Fire, water, and biodiversity in the Sierra Nevada: A possible triple win. Environmental Research Communications 3(8):081004. https://doi.org/10.1088/2515-7620/ac17e2.

Swetnam, T. W., J. Farella, C. I. Roos, M. J. Liebmann, D. A. Falk, and C. D. Allen. 2016. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1696):20150168. https://doi.org/10.1098/rstb.2015.0168.

Trumbore, S., P. Brando, and H. Hartmann. 2015. Forest health and global change. Science 349(6250):814-818. https://doi.org/10.1126/science.aac6759.

Turco, M., J. T. Abatzoglou, S. Herrera, Y. Zhuang, S. Jerez, D. D. Lucas, A. AghaKouchak, and I. Cvijanovic. 2023. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proceedings of the National Academy of Sciences of the United States 120(25):e2213815120. https://doi.org/10.1073/pnas.2213815120.

UNEP (United Nations Environment Programme). 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. Nairobi. https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires.

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10(23):11707-11735. https://doi.org/10.5194/acp-10-11707-2010.

Vanderhoof, M. K., T. J. Hawbaker, C. Teske, A. Ku, J. Noble, and J. Picotte. 2021. Mapping wetland burned area from Sentinel-2 across the southeastern United States and its contributions relative to Landsat-8 (2016–2019). Fire 4(3):52. https://doi.org/10.3390/fire4030052.

Veraverbeke, S., C. J. F. Delcourt, E. Kukavskaya, M. Mack, X. Walker, T. Hessilt, B. Rogers, and R. C. Scholten. 2021. Direct and longer-term carbon emissions from Arctic-boreal fires: A short review of recent advances. Current Opinion in Environmental Science & Health 23:100277. https://doi.org/10.1016/j.coesh.2021.100277.

Walker, X. J., J. L. Baltzer, S. G. Cumming, N. J. Day, C. Ebert, S. Goetz, J. F. Johnstone, S. Potter, B. M. Rogers, E. A. G. Schuur, M. R. Turetsky, and M. C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y.

Wang, J. A., J. T. Randerson, M. L. Goulden, C. A. Knight, and J. J. Battles. 2022. Losses of tree cover in California driven by increasing fire disturbance and climate stress. AGU Advances 3(4):e2021AV000654. https://doi.org/10.1029/2021AV000654.

Westerling, A. L., Hidalgo, G. H., Cayan, R. D., and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313(5789):940-943. https://doi.org/10.1126/science.1128834.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.

Wildland Fire Mitigation and Management Commission. 2023. On Fire: The Report of the Wildland Fire Mitigation and Management Commission. Washington, DC: US Department of Agriculture. https://www.usda.gov/sites/default/files/documents/wfmmc-finalreport-09-2023.pdf.

Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman. 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research: Atmospheres 110(D24). https://doi.org/10.1029/2005JD006318.

Zheng, B., F. Chevallier, P. Ciais, Y. Yin, M. N. Deeter, H. M. Worden, Y. Wang, Q. Zhang, and K. He. 2018a. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters 13(4):044007. https://doi.org/10.1088/1748-9326/aab2b3.

Zheng, B., F. Chevallier, P. Ciais, Y. Yin, and Y. Wang. 2018b. On the role of the flaming to smoldering transition in the seasonal cycle of African fire emissions. Geophysical Research Letters 45(21):11,998-12,007. https://doi.org/10.1029/2018GL079092.

Zheng, B., P. Ciais, F. Chevallier, E. Chuvieco, Y. Chen, and H. Yang. 2021. Increasing forest fire emissions despite the decline in global burned area. Science Advances 7(39):eabh2646. https://doi.org/10.1126/sciadv.abh2646.

Zheng, B., P. Ciais, F. Chevallier, H. Yang, J. G. Canadell, Y. Chen, I. R. van der Velde, I. Aben, E. Chuvieco, S. J. Davis, M. Deeter, C. Hong, Y. Kong, H. Li, H. Li, X. Lin, K. He, and Q. Zhang. 2023. Record-high CO2 emissions from boreal fires in 2021. Science 379(6635):912-917. https://doi.org/10.1126/science.ade0805.

Zubkova, M., M. L. Humber, and L. Giglio. 2023. Is global burned area declining due to cropland expansion? How much do we know based on remotely sensed data? International Journal of Remote Sensing 44(4):1132-1150. https://doi.org/10.1080/01431161.2023.2174389.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 61
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 62
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 63
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 64
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 65
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 66
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 67
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 68
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 69
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Greenhouse Gas Emissions from Wildland Fires: Toward Improved Monitoring, Modeling, and Management: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27473.
Page 70
Next Chapter: Appendix A: Statement of Task
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.