Previous Chapter: 7 Exploring Future Opportunities for Continued Collaboration
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

Appendix A

References

Abràmoff, M. D., P. T. Lavin, M. Birch, N. Shah, and J. C. Folk. 2018. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine 1(1):39.

Abràmoff, M. D., B. Cunningham, B. Patel, M. F. Chiang, D. Char, on behalf of Collaborative Community on Ophthalmic Imaging Executive Committee and Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working Group. 2021. Foundational considerations for artificial intelligence. Ophthalmology 129(2):e14-e32. https://doi.org/10.1016/j.ophtha.2021.08.023.

Abràmoff, M. D., B. Cunningham, B. Patel, M. B. Eydelman, T. Leng, T. Sakamoto, B. Blodi, S. M. Grenon, R. M. Wolf, and A. K. Manrai. 2022. Foundational considerations for artificial intelligence using ophthalmic images. Ophthalmology 129(2):e14–e32.

Amer, M., and T. Maul. 2019. A review of modularization techniques in artificial neural networks. Artificial Intelligence Review 52:527–561.

Amunts, K., M. Axer, S. Banerjee, L. Bitsch, J. G. Bjaalie, P. Brauner, A. Brovelli, N. Calarco, M. Carrere, and S. Caspers. 2024. The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing. Imaging Neuroscience 2:1–35.

Awad, E., S. Levine, M. Anderson, S. L. Anderson, V. Conitzer, M. Crockett, J. A. Everett, T. Evgeniou, A. Gopnik, and J. C. Jamison. 2022. Computational ethics. Trends in Cognitive Sciences 26(5):388–405.

Barto, A. G., and R. S. Sutton. 1997. Reinforcement learning in artificial intelligence. In Advances in psychology, Vol. 121. Amsterdam: Elsevier. Pp. 358–386.

Bellier, L., A. Llorens, D. Marciano, A. Gunduz, G. Schalk, P. Brunner, and R. T. Knight. 2023. Music can be reconstructed from human auditory cortex activity using nonlinear decoding models. PLoS Biology 21(8):e3002176.

Benz, H. L., and E. F. Civillico. 2017. Neuroprosthetics and the science of patient input. Experimental Neurology 287:486–491.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

Berglund, L., M. Tong, M. Kaufmann, M. Balesni, A. C. Stickland, T. Korbak, and O. Evans. 2023. The reversal curse: LLMs trained on “a is b” fail to learn “b is a.” arXiv Preprint: arXiv:2309.12288.

Bernabei, J. M., A. Li, A. Y. Revell, R. J. Smith, K. M. Gunnarsdottir, I. Z. Ong, K. A. Davis, N. Sinha, S. Sarma, and B. Litt. 2023. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 146(6):2248–2258.

BRAIN Working Group (Brain Research through Advancing Innovative Neurotechnologies). 2014. BRAIN 2025: A scientific vision. Washington, DC: National Institutes of Health.

Brown University. 2023. Brown scholars put their heads together to decode the neuroscience behind ChatGPT. https://www.brown.edu/news/2023-02-09/neuroscience-chatbot (accessed June 11, 2024).

Cadieu, C. F., H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, and J. J. DiCarlo. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology 10(12):e1003963.

Callaway, E. 2020. “It will change everything”: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588(7837):203–205.

Collins, R. 2012. What makes UK Biobank special? The Lancet 379(9822):1173–1174.

Deshpande, R. 2024. Smart match: Revolutionizing organ allocation through artificial intelligence. Frontiers in Artificial Intelligence 7:1364149.

Edelman. 2024. 2024 Edelman Trust barometer. https://www.edelman.com/trust/2024/trust-barometer (accessed July 22, 2024).

Farahany, N. A. 2023. The battle for your brain: Defending the right to think freely in the age of neurotechnology. New York: St. Martin’s Press.

Felleman, D. J., and D. C. Van Essen. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1):1–47.

Fitzpatrick, K. K., A. Darcy, and M. Vierhile. 2017. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health 4(2):e7785.

Frank, R. A., R. Jarrin, J. Pritzker, M. D. Abràmoff, M. X. Repka, P. D. Baird, S. Marlene Grenon, M. R. Mahoney, J. E. Mattison, and E. Silva III. 2022. Developing current procedural terminology codes that describe the work performed by machines. NPJ Digital Medicine 5(1):177.

Gerraty, R. T., A. Provost, L. Li, E. Wagner, M. Haas, and L. Lancashire. 2023. Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs. Frontiers in Aging Neuroscience 15:1076657.

Guo, C., M. Lee, G. Leclerc, J. Dapello, Y. Rao, A. Madry, and J. Dicarlo. 2022. Adversarially trained neural representations are already as robust as biological neural representations. Paper presented at the International Conference on Machine Learning, Honolulu, HI.

Hassabis, D., D. Kumaran, C. Summerfield, and M. Botvinick. 2017. Neuroscience-inspired artificial intelligence. Neuron 95(2):245–258.

Hebb, D. O. 2005. The organization of behavior: A neuropsychological theory. London: Psychology Press.

HHS (Department of Health and Human Services). 2023. HHS finalizes rule to advance health IT interoperability and algorithm transparency. https://www.hhs.gov/about/news/2023/12/13/hhs-finalizes-rule-to-advance-health-it-interoperability-and-algorithm-transparency.html (accessed June 11, 2024).

ITU/WHO Focus Group AI for Health Working Group. 2023. [FG-AI4H DEL7.4] Clinical evaluation of AI for health. https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4H-2023-3-PDF-E.pdf (accessed August 12, 2024).

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

Jeromin, A., H. C. Lasseter, A. C. Provost, N. P. Daskalakis, A. Etkin, P. Gehrman, L. Lancashire, B. P. Marx, R. McGlinchey, and M. Haas. 2020. Driving progress in posttraumatic stress disorder biomarkers. Biological Psychiatry 87(6):e13–e14.

Jirsa, V., H. Wang, P. Triebkorn, M. Hashemi, J. Jha, J. Gonzalez-Martinez, M. Guye, J. Makhalova, and F. Bartolomei. 2023. Personalised virtual brain models in epilepsy. The Lancet Neurology 22(5):443–454.

Kates, S., J. Ladd, and J. Tucker. 2023. How Americans’ confidence in technology firms has dropped: Evidence from the second wave of the American institutional confidence poll. Brookings Institute. https://www.brookings.edu/articles/how-americans-confidence-in-technology-firms-has-dropped-evidence-from-the-second-wave-of-the-american-institutional-confidence-poll (accessed July 22, 2024).

Kohoutová, L., J. Heo, S. Cha, S. Lee, T. Moon, T. D. Wager, and C.-W. Woo. 2020. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nature Protocols 15(4):1399–1435.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25.

Levin, B., and L. Downes. 2023. Who is going to regulate AI? Harvard Business Review. https://hbr.org/2023/05/who-is-going-to-regulate-ai (accessed June 11, 2024).

Li, Y., G. K. Anumanchipalli, A. Mohamed, P. Chen, L. H. Carney, J. Lu, J. Wu, and E. F. Chang. 2023. Dissecting neural computations in the human auditory pathway using deep neural networks for speech. Nature Neuroscience 26(12):2213–2225.

Mass General Brigham. 2024. Implantable Brain-Computer Interface Collaborative Community (iBCI-CC) to drive innovation in neurotechnology. https://www.massgeneralbrigham.org/en/about/newsroom/press-releases/implantable-brain-computer-interface-collaborative-community (accessed June 11, 2024).

McCulloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–133.

McKinney, S. M., M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. S. Corrado, and A. Darzi. 2020. International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94.

Merullo, J., C. Eickhoff, and E. Pavlick. 2024. Language models implement simple word2vecstyle vector arithmetic. arXiv Preprint: arXiv:2305.16130.

Metzger, S. L., K. T. Littlejohn, A. B. Silva, D. A. Moses, M. P. Seaton, R. Wang, M. E. Dougherty, J. R. Liu, P. Wu, and M. A. Berger. 2023. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620(7976):1037–1046.

Montague, P. R., P. Dayan, and T. J. Sejnowski. 1996. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience 16(5):1936–1947.

Muurling, M., C. de Boer, S. Vairavan, R. L. Harms, A. S. Chadha, I. Tarnanas, E. V. Luis, D. Religa, M. T. Gjestsen, and S. Galluzzi. 2023. Augmented reality versus standard tests to assess cognition and function in early Alzheimer’s disease. NPJ Digital Medicine 6(1):234.

NAIAC (National Artificial Intelligence Advisory Committee). 2023. Recommendations: Enhancing AI literacy for the United States of America. https://ai.gov/wp-content/uploads/2023/12/Recommendations_Enhancing-Artificial-Intelligence-Literacy-for-the-United-States-of-America.pdf (accessed June 1, 2024).

NAIRR Task Force (National Artificial Intelligence Research Resource Task Force). 2023. Strengthening and democratizing the U.S. artificial intelligence innovation ecosystem: An implementation plan for a national artificial intelligence research resource. https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf (accessed June 1, 2024).

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2021. Assessing and improving AI trustworthiness: Current contexts and concerns: Proceedings of a workshop–in brief. Washington, DC: The National Academies Press.

NIH (National Institutes of Health). 2024. All of Us Research Program. https://allofus.nih.gov (accessed June 11, 2024).

Patterson, D., J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, and J. Dean. 2021. Carbon emissions and large neural network training. arXiv Preprint: arXiv:2104.10350.

Pizzagalli, D. A., D. Iosifescu, L. A. Hallett, K. G. Ratner, and M. Fava. 2008. Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research 43(1):76–87.

Rahman, W., A. Abdelkader, S. Lee, P. Yang, M. S. Islam, T. Adnan, M. Hasan, E. Wagner, S. Park, and E. R. Dorsey. 2024. A user-centered framework to empower people with Parkinson’s disease. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7(4):1–29.

Rockland, K. S., and D. N. Pandya. 1979. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179(1):3–20.

Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6):386.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning internal representations by error propagation. In Parallel distributed processing, volume 1: Explorations in the microstructure of cognition, edited by D. E. Rumelhart, J. McClelland, and PDP Research Group. Cambridge, MA: MIT Press. Pp. 318–362.

Sankaran, S., C. Zhang, H. Aarts, and P. Markopoulos. 2021. Exploring peoples’ perception of autonomy and reactance in everyday AI interactions. Frontiers in Psychology 12:713074.

Schirner, M., L. Domide, D. Perdikis, P. Triebkorn, L. Stefanovski, R. Pai, P. Prodan, B. Valean, J. Palmer, and C. Langford. 2022. Brain simulation as a cloud service: The virtual brain on EBRAINS. NeuroImage 251:118973.

Senden, M., S. J. van Albada, G. Pezzulo, E. Falotico, I. Hashim, A. Kroner, A. C. Kurth, P. Lanillos, V. Narayanan, C. Pennartz, M. A. Petrovici, L. Steffen, T. Weidler, and R. Goebel. 2024. Modular-integrative modeling: A new framework for building brain models that blend biological realism and functional performance. National Science Review (11)5. https://doi.org/10.1093/nsr/nwad318.

Steinmetz, J. D., K. M. Seeher, N. Schiess, E. Nichols, B. Cao, C. Servili, V. Cavallera, E. Cousin, H. Hagins, and M. E. Moberg. 2024. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the global burden of disease study 2021. The Lancet Neurology 23(4):344–381.

Subramanian, A., S. Chitlangia, and V. Baths. 2022. Reinforcement learning and its connections with neuroscience and psychology. Neural Networks 145:271–287.

Suharwardy, S., M. Ramachandran, S. A. Leonard, A. Gunaseelan, D. J. Lyell, A. Darcy, A. Robinson, and A. Judy. 2023. Feasibility and impact of a mental health chatbot on postpartum mental health: A randomized controlled trial. AJOG Global Reports 3(3):100165.

Sutton, R. 2019. The bitter lesson. Incomplete Ideas (blog), March 13. http://www.incompleteideas.net/IncIdeas/BitterLesson.html (accessed July 22, 2024).

Sutton, R. S., and A. G. Barto. 1998. Reinforcement learning: An introduction. MIT Press.

Tang, J., A. LeBel, S. Jain, and A. G. Huth. 2023. Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience 26(5):858–866.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

Traylor, A., J. Merullo, M. J. Frank, and E. Pavlick. 2024. Transformer mechanisms mimic frontostriatal gating operations when trained on human working memory tasks. arXiv Preprint: arXiv:2402.08211.

WHO (World Health Organization). 2023. Regulatory considerations on artificial intelligence for health. Geneva: World Health Organization.

Wolf, R. M., R. Channa, T. A. Liu, A. Zehra, L. Bromberger, D. Patel, A. Ananthakrishnan, E. A. Brown, L. Prichett, and H. P. Lehmann. 2024. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: The access randomized control trial. Nature Communications 15(1):421.

World Economic Forum. 2022. A blueprint for equity and inclusion in artificial intelligence. Geneva: World Economic Forum.

Wu, K., E. Wu, B. Theodorou, W. Liang, C. Mack, L. Glass, J. Sun, and J. Zou. 2023. Characterizing the clinical adoption of medical ai devices through US insurance claims. NEJM AI 1(1):AIoa2300030.

Xie, K., R. S. Gallagher, E. C. Conrad, C. O. Garrick, S. N. Baldassano, J. M. Bernabei, P. D. Galer, N. J. Ghosn, A. S. Greenblatt, and T. Jennings. 2022. Extracting seizure frequency from epilepsy clinic notes: A machine reading approach to natural language processing. Journal of the American Medical Informatics Association 29(5):873–881.

Xie, K., R. S. Gallagher, R. T. Shinohara, S. X. Xie, C. E. Hill, E. C. Conrad, K. A. Davis, D. Roth, B. Litt, and C. A. Ellis. 2023. Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes. Epilepsia 64(7):1900–1909.

Yamins, D. L., H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences 111(23):8619–8624.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.

This page intentionally left blank.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 55
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 56
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 57
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 58
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 59
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2024. Exploring the Bidirectional Relationship Between Artificial Intelligence and Neuroscience: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27764.
Page 60
Next Chapter: Appendix B: Workshop Agenda
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.