Abi-Jaoude, E., Naylor, K. T., & Pignatiello, A. (2020). Smartphones, social media use and youth mental health. CMAJ, 192(6), E136–E141. https://doi.org/10.1503/cmaj.190434.
Abbott, L. K., Macdonald, L. M., Wong, M. T. F., Webb, M. J., Jenkins, S. N., & Farrell, M. (2018). Potential roles of biological amendments for profitable grain production–A review. Agriculture, Ecosystems & Environment, 256, 34–50. https://doi.org/10.1016/j.agee.2017.12.021.
Abernethy, S., Buechler, R., Kessler, M. I., & Jackson, R. B. (2024). Temperature responses from methane mitigation approaches vary widely due to non-methane impacts. Environmental Research Letters, 19(8), Article 081006. https://doi.org/10.1088/1748-9326/ad60e0.
Abernethy, S., & Jackson, R. B. (2022). Global temperature goals should determine the time horizons for greenhouse gas emission metrics. Environmental Research Letters, 17(2), Article 024019. https://doi.org/10.1088/1748-9326/ac4940.
Abernethy, S., & Jackson, R. B. (2024). Atmospheric methane removal may reduce climate risks. Environmental Research Letters, 19(5), Article 051001. https://doi.org/10.1088/1748-9326/ad3b22
Abernethy, S., Kessler, M. I., & Jackson, R. B. (2023). Assessing the potential benefits of methane oxidation technologies using a concentration-based framework. Environmental Research Letters, 18(9), Article 094064. https://doi.org/10.1088/1748-9326/acf603.
Abernethy, S., O’Connor, F. M., Jones, C. D., & Jackson, R. B. (2021). Methane removal and the proportional reductions in surface temperature and ozone. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2210). https://doi.org/10.1098/rsta.2021.0104.
Aggarwal, A., & Brockington, D. (2020). Reducing or creating poverty? Analyzing livelihood impacts of forest carbon projects with evidence from India. Land Use Policy, 95, Article 104608. https://doi.org/10.1016/j.landusepol.2020.104608.
Allan, W., Struthers, H., & Lowe, D. C. (2007). Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research: Atmospheres, 112(D4). https://doi.org/10.1029/2006JD007369.
Allen, M. R., Peters, G. P., Shine, K. P., Azar, C., Balcombe, P., Boucher, O., Cain, M., Ciais, P., Collins, W., Forster, P. M., Frame, D. J., Friedlingstein, P., Fyson, C., Gasser, T., Hare, B., Jenkins, S., Hamburg, S. P., Johansson, D. J. A., Lynch, J., … Tanaka, K. (2022). Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. Npj Climate and Atmospheric Science, 5(1), 1–4. https://doi.org/10.1038/s41612-021-00226-2.
Allshouse, W. B., McKenzie, L. M., Barton, K., Brindley, S., & Adgate, J. L. (2019). Community noise and air pollution exposure during the development of a multi-well oil and gas pad. Environmental Science & Technology, 53(12), 7126–7135. https://doi.org/10.1021/acs.est.9b00052.
Anderson, D. C., Duncan, B. N., Nicely, J. M., Liu, J., Strode, S. A., & Follette-Cook, M. B. (2023). Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers–first steps toward assessing the feasibility of a global observation strategy. Atmospheric Chemistry and Physics, 23(11), 6319–6338. https://doi.org/10.5194/acp-23-6319-2023.
Andrews, T. M., Delton, A. W., & Kline, R. (2022). Anticipating moral hazard undermines climate mitigation in an experimental geoengineering game. Ecological Economics, 196, Article 107421. https://doi.org/10.1016/j.ecolecon.2022.107421.
Arcusa, S., & Sprenkle-Hyppolite, S. (2022). Snapshot of the carbon dioxide removal certification and standards ecosystem (2021–2022). Climate Policy, 22(9–10), 1319–1332. https://doi.org/10.1080/14693062.2022.2094308.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., … Ziehn, T. (2020). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16), 4173–4222. https://doi.org/10.5194/bg-17-4173-2020.
ARPA-E (Advanced Research Projects Agency–Energy). (2021, December 2). U.S. Department of Energy awards $35 million for technologies to reduce methane emissions [Press release]. https://arpa-e.energy.gov/news-and-media/press-releases/us-department-energy-awards-35-million-technologies-reduce-methane.
Austin, M. M. K., & Converse, B. A. (2021). In search of weakened resolve: Does climate-engineering awareness decrease individuals’ commitment to mitigation? Journal of Environmental Psychology, 78, Article 101690. https://doi.org/10.1016/j.jenvp.2021.101690.
Azar, C., Martín, J. G., Johansson, D. J. A., & Sterner, T. (2023). The social cost of methane. Climatic Change, 176(6), Article 71. https://doi.org/10.1007/s10584-023-03540-1.
Badgley, G., Freeman, J., Hamman, J. J., Haya, B., Trugman, A. T., Anderegg, W. R. L., & Cullenward, D. (2022). Systematic over-crediting in California’s forest carbon offsets program. Global Change Biology, 28(4), 1433–1445. https://doi.org/10.1111/gcb.15943.
Bae, J.-S., Su, S., & Yu, X. X. (2014). Enrichment of ventilation air methane (VAM) with carbon fiber composites. Environmental Science & Technology, 48(10), 6043–6049. https://doi.org/10.1021/es500025c.
Bammer, G. (2021, November 3). Stakeholder engagement primer: 4. Options for engagement. Integration and Implementation Insights. https://i2insights.org/2021/11/04/optionsfor-engagement/.
Baptista, A. I., & Ventrella, J. (2022). False solutions for just climate mitigation and clean energy policies: Case studies of New Jersey, Delaware, and Minnesota. Tishman Environment and Design Center, The New School. https://static1.squarespace.com/static/5d14dab43967cc000179f3d2/t/634d9238e4507916b46a27d0/1666028089236/False+Solutions_Report_10.17.22.pdf.
Bastviken, D., Treat, C. C., Pangala, S. R., Gauci, V., Enrich-Prast, A., Karlson, M., Gålfalk, M., Romano, M. B., & Sawakuchi, H. O. (2023). The importance of plants for methane emission at the ecosystem scale. Aquatic Botany, 184, Article 103596. https://doi.org/10.1016/j.aquabot.2022.103596.
Batel, S. (2020). Research on the social acceptance of renewable energy technologies: Past, present and future. Energy Research & Social Science, 68, Article 101544. https://doi.org/10.1016/j.erss.2020.101544.
Batres, M., Wang, F. M., Buck, H., Kapila, R., Kosar, U., Licker, R., Nagabhushan, D., Rekhelman, E., & Suarez, V. (2021). Environmental and climate justice and technological carbon removal. The Electricity Journal, 34(7), Article 107002. https://doi.org/10.1016/j.tej.2021.107002.
Baum, C. M., Fritz, L., Low, S., & Sovacool, B. K. (2024). Public perceptions and support of climate intervention technologies across the Global North and Global South. Nature Communications, 15(1), Article 2060. https://doi.org/10.1038/s41467-024-46341-5.
Bayer, P., & Aklin, M. (2020). The European Union Emissions Trading System reduced CO2 emissions despite low prices. Proceedings of the National Academy of Sciences, 117(16), 8804–8812. https://doi.org/10.1073/pnas.1918128117.
Bergerson, J. A., Brandt, A., Cresko, J., Carbajales-Dale, M., MacLean, H. L., Matthews, H. S., McCoy, S., McManus, M., Miller, S. A., Morrow, W. R., Posen, I. D., Seager, T., Skone, T., & Sleep, S. (2020). Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. Journal of Industrial Ecology, 24(1):11–25. https://doi.org/10.1111/jiec.12954.
Bergquist, P., & Mahdavi, P. (2023). Examining the effect of cost information and framing on support for methane regulations in Europe. Environmental Research Letters, 18(9), Article 094046. https://doi.org/10.1088/1748-9326/acf32c.
Bertagni, M. (2023, October 18). Tangled hydrogen (H2) and methane (CH4) budgets. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Bertagni, M. B., Pacala, S. W., Paulot, F., & Porporato, A. (2022). Risk of the hydrogen economy for atmospheric methane. Nature Communications, 13, Article 7706. https://doi.org/10.1038/s41467-022-35419-7.
Best, R., Burke, P. J., & Jotzo, F. (2020). Carbon pricing efficacy: Cross-country evidence. Environmental and Resource Economics, 77(1), 69–94. https://doi.org/10.1007/s10640-020-00436-x.
Bezyk, Y., Sówka, I., Górka, M., & Nęcki, J. (2022). Spatial and temporal patterns of methane uptake in the urban environment. Urban Climate, 41, Article 101073. https://doi.org/10.1016/j.uclim.2021.101073.
Biermann, F., Oomen, J., Gupta, A., Ali, S. H., Conca, K., Hajer, M. A., Kashwan, P., Kotzé, L. J., Leach, M., Messner, D., Okereke, C., Persson, Å., Potočnik, J., Schlosberg, D., Scobie, M., & VanDeveer, S. D. (2022). Solar geoengineering: The case for an international non-use agreement. WIREs Climate Change, 13(3), e754. https://doi.org/10.1002/wcc.754.
Bipartisan Policy Center. (2011). Task force on climate remediation research. https://bipartisan-policy.org/report/task-force-climate-remediation-research/.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1), Article 264. https://doi.org/10.1038/s41467-018-08240-4.
Bodelier, P. L. (2011). Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability, 3(5), 379–388. https://doi.org/10.1016/j.cosust.2011.06.002.
Borjigin-Wang, E., Benson, S., & Patrizio, P. (2024). Evidence synthesis report part 1: Carbon credits. Science Based Targets initiative.
Boucher, O., & Folberth, G. A. (2010). New directions: Atmospheric methane removal as a way to mitigate climate change? Atmospheric Environment, 44(27), 3343–3345. https://doi.org/10.1016/j.atmosenv.2010.04.032.
Boudet, H. S. (2019). Public perceptions of and responses to new energy technologies. Nature Energy, 4(6), 446–455. https://doi.org/10.1038/s41560-019-0399-x.
Bozeman, J. F., Nobler, E., & Nock, D. (2022). A path toward systemic equity in life cycle assessment and decision-making: Standardizing sociodemographic data practices. Environmental Engineering Science, 39(9), 759–769. https://doi.org/10.1089/ees.2021.0375.
Brasier, K. J., McLaughlin, D. K., Rhubart, D., Stedman, R. C., Filteau, M. R., & Jacquet, J. (2013). Research articles: Risk perceptions of natural gas development in the Marcellus Shale. Environmental Practice, 15(2), 108–122. https://doi.org/10.1017/S1466046613000021.
Brazzola, N., Wohland, J., & Patt, A. (2021). Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets. PLoS ONE, 16(3), Article e0247887. https://doi.org/10.1371/journal.pone.0247887.
Brenneis, R. J., Johnson, E. P., Shi, W., & Plata, D. L. (2022). Atmospheric- and low-level methane abatement via an Earth-abundant catalyst. ACS Environmental Au, 2(3), 223–231. https://doi.org/10.1021/acsenvironau.1c00034.
Brenninkmeijer, C. A. M. (1993). Measurement of the abundance of 14CO in the atmosphere and the 13C/ 12C and 18O/ 16O ratio of atmospheric CO with applications in New Zealand and Antarctica. Journal of Geophysical Research: Atmospheres, 98(D6), 10595–10614. https://doi.org/10.1029/93JD00587.
Brenninkmeijer, C. A. M., Manning, M. R., Lowe, D. C., Wallace, G., Sparks, R. J., & VolzThomas, A. (1992). Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature, 356(6364), 50–52. https://doi.org/10.1038/356050a0.
Brent, K., Burns, W., & McGee, J. (2019). Governance of marine geoengineering. Centre for International Governance Innovation. https://www.cigionline.org/publications/governance-marine-geoengineering/.
Brookfield. (2024, February 14). The misunderstood U.S. office market. Brookfield. https://www.brookfield.com/news-insights/insights/misunderstood-us-office-market.
Brosius, L. S., Walter Anthony, K. M., Grosse, G., Chanton, J. P., Farquharson, L. M., Overduin, P. P., & Meyer, H. (2012). Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. Journal of Geophysical Research: Biogeosciences, 117(G1). https://doi.org/10.1029/2011JG001810.
Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5(8), 980–989. https://doi.org/10.1038/s41562-021-01143-3.
Buck, H. J., Carton, W., Lund, J. F., & Markusson, N. (2023). Why residual emissions matter right now. Nature Climate Change, 13(4), 351–358. https://doi.org/10.1038/s41558-022-01592-2.
Burdge, R. J. (2002). Why is social impact assessment the orphan of the assessment process? Impact Assessment and Project Appraisal, 20(1), 3–9. https://doi.org/10.3152/147154602781766799.
Burns, E. T., Flegal, J. A., Keith, D. W., Mahajan, A., Tingley, D., & Wagner, G. (2016). What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research. Earth’s Future, 4(11), 536–542. https://doi.org/10.1002/2016EF000461.
Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R., & Jia, Z. (2016). Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications, 7(1), Article 11728. https://doi.org/10.1038/ncomms11728.
Campbell-Arvai, V., Hart, P. S., Raimi, K. T., & Wolske, K. S. (2017). The influence of learning about carbon dioxide removal (CDR) on support for mitigation policies. Climatic Change, 143(3–4), 321–336. https://doi.org/10.1007/s10584-017-2005-1.
Carrico, A. R., Truelove, H. B., Vandenbergh, M. P., & Dana, D. (2015). Does learning about climate change adaptation change support for mitigation? Journal of Environmental Psychology, 41, 19–29. https://doi.org/10.1016/j.jenvp.2014.10.009.
Carton, W., Hougaard, I., Markusson, N., & Lund, J. F. (2023). Is carbon removal delaying emission reductions? WIREs Climate Change, 14(4), e826. https://doi.org/10.1002/wcc.826.
Castel, C., Bounaceur, R., & Favre, E. (2021). Membrane processes for direct carbon dioxide capture from air: Possibilities and limitations. Frontiers in Chemical Engineering, 3, Article 668867. https://doi.org/10.3389/fceng.2021.668867.
Cavanagh, C., & Benjaminsen, T. A. (2014). Virtual nature, violent accumulation: The “spectacular failure” of carbon offsetting at a Ugandan National Park. Geoforum, 56, 55–65. https://doi.org/10.1016/j.geoforum.2014.06.013.
Cayuela, M. L., Sánchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2013). Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Scientific Reports, 3(1), Article 1732. https://doi.org/10.1038/srep01732.
CCAC (Climate and Clean Air Coalition). (2023). Highlights from 2023 Global Methane Pledge Ministerial [Press release]. https://www.globalmethanepledge.org/news/highlights-2023-global-methane-pledge-ministerial.
Chang, J., Gu, W., Park, D., Semrau, J. D., DiSpirito, A. A., & Yoon, S. (2018). Methanobactin from Methylosinus trichosporium OB3b inhibits N2O reduction in denitrifiers. The ISME Journal, 12(8), 2086–2089. https://doi.org/10.1038/s41396-017-0022-8.
Chang, J., Kim, D. D., Semrau, J. D., Lee, J. Y., Heo, H., Gu, W., & Yoon, S. (2021). Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Applied and Environmental Microbiology, 87(5), Article e02301-20. https://doi.org/10.1128/AEM.02301-20.
Chen, H., Athar, R., Zheng, G., & Williams, H. N. (2011). Prey bacteria shape the community structure of their predators. The ISME Journal, 5(8), 1314–1322. https://doi.org/10.1038/ismej.2011.4.
Chen, K.-H., Feng, J., Bodelier, P. L. E., Yang, Z., Huang, Q., Delgado-Baquerizo, M., Cai, P., Tan, W., & Liu, Y.-R. (2024). Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields. Nature Communications, 15(1), Article 3471. https://doi.org/10.1038/s41467-024-47827-y.
Chen, Q., Wang, X., Fu, X., Li, X., Alexander, B., Peng, X., Wang, W., Xia, M., Tan, Y., Gao, J., Chen, J., Mu, Y., Liu, P., & Wang, T. (2024). Impact of molecular chlorine production from aerosol iron photochemistry on atmospheric oxidative capacity in North China. Environmental Science & Technology, 58(28), 12585–12597. https://doi.org/10.1021/acs.est.4c02534.
Chen, X., Li, Y., Pan, X., Cortie, D., Huang, X., & Yi, Z. (2016). Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nature Communications, 7(1), Article 12273. https://doi.org/10.1038/ncomms12273.
Cherry, T. L., Kallbekken, S., Kroll, S., & McEvoy, D. M. (2021). Does solar geoengineering crowd out climate change mitigation efforts? Evidence from a stated preference referendum on a carbon tax. Climatic Change, 165(1–2), Article 6. https://doi.org/10.1007/s10584-021-03009-z.
Cherry, T. L., Kroll, S., McEvoy, D. M., Campoverde, D., & Moreno-Cruz, J. (2023). Climate cooperation in the shadow of solar geoengineering: An experimental investigation of the moral hazard conjecture. Environmental Politics, 32(2), 362–370. https://doi.org/10.1080/09644016.2022.2066285.
Chetri, J. K., & Reddy, K. R. (2021). Methane recovery from landfills. W. Guo, H.H. Ngo, R.Y. Surampalli and T.C. Zhang (Eds.), Sustainable resource management, volume I: Technologies for recovery and reuse of energy and waste materials (pp. 699–722). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527825394.ch24.
Chhetri, N., Chong, D., Conca, K., Falk, R., Gillespie, A., Gupta, A., Jinnah, S., Kashwan, P., Lahsen, M., Light, A., McKinnon, C., Thiele, L. P., Valdivia, W., Wapner, P., Morrow, D. R., Turkaly, C., & Nicholson, S. (2018). Governing solar radiation management. https://doi.org/10.17606/M6SM17.
Chulakadabba, A., Sargent, M., Lauvaux, T., Benmergui, J. S., Franklin, J. E., Chan Miller, C., Wilzewski, J. S., Roche, S., Conway, E., Souri, A. H., Sun, K., Luo, B., Hawthrone, J., Samra, J., Daube, B. C., Liu, X., Chance, K., Li, Y., Gautam, R., … Wofsy, S. C. (2023). Methane point source quantification using MethaneAIR: A new airborne imaging spectrometer. Atmospheric Measurement Techniques, 16(23), 5771–5785. https://doi.org/10.5194/amt-16-5771-2023.
Cohen-Shields, N., Sun, T., Hamburg, S. P., & Ocko, I. B. (2023). Distortion of sectoral roles in climate change threatens climate goals. Frontiers in Climate, 5, Article 1163557. https://doi.org/10.3389/fclim.2023.1163557.
Collett, T. S., Lee, M. W., Agena, W. F., Miller, J. J., Lewis, K. A., Zyrianova, M. V., Boswell, R., & Inks, T. L. (2011). Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology, 28(2), 279–294. https://doi.org/10.1016/j.marpetgeo.2009.12.001.
Conceição, M. A., Monteiro, M. M., Kasraian, D., van den Berg, P., Haustein, S., Alves, I., Azevedo, C. L., & Miranda, B. (2022). The effect of transport infrastructure, congestion and reliability on mental wellbeing: A systematic review of empirical studies. Transport Review, 43(2), 264–302. https://doi.org/10.1080/01441647.2022.2100943.
Congressional Research Service. (2022). Inflation Reduction Act methane emissions charge: In brief (R47206). https://crsreports.congress.gov/product/pdf/R/R47206.
Conrad, R., & Rothfuss, F. (1991). Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils, 12(1), 28–32. https://doi.org/10.1007/BF00369384.
Contzen, N., Perlaviciute, G., Steg, L., Reckels, S. C., Alves, S., Bidwell, D., Böhm, G., Bonaiuto, M., Chou, L.-F., Corral-Verdugo, V., Dessi, F., Dietz, T., Doran, R., Eulálio, M. D. C., Fielding, K., Gómez-Román, C., Granskaya, J. V., Gurikova, T., Hernández, B., … Sütterlin, B. (2024). Public opinion about solar radiation management: A cross-cultural study in 20 countries around the world. Climatic Change, 177(4), Article 65. https://doi.org/10.1007/s10584-024-03708-3.
Converse, B. A., Hancock, P. I., Klotz, L. E., Clarens, A. F., & Adams, G. S. (2021). If humans design the planet: A call for psychological scientists to engage with climate engineering. American Psychologist, 76(5), 768–780. https://doi.org/10.1037/amp0000656.
Corner, A., & Pidgeon, N. (2014). Geoengineering, climate change scepticism and the “moral hazard” argument: An experimental study of UK public perceptions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031). https://doi.org/10.1098/rsta.2014.0063.
Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35–51. https://doi.org/10.1111/nph.15624.
Covey, K. R., Wood, S. A., Warren, R. J., Lee, X., & Bradford, M. A. (2012). Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters, 39(15). https://doi.org/10.1029/2012GL052361.
CPI (Climate Policy Initiative), de Aragão Fernandes, P., Naran, B., Gupta, I., Wignarajah, D., Connolly, J., Patience, L., & Zhang, T. (2023). Landscape of methane abatement finance 2023. https://www.climatepolicyinitiative.org/wp-content/uploads/2023/11/Landscape-of-Methane-Abatement-Finance.pdf.
Craik, A., & Burns, W. (2016). Climate engineering under the Paris Agreement: A legal and policy primer. Centre for International Governance Innovation. https://www.cigionline.org/publications/climate-engineering-under-paris-agreement-legal-and-policy-primer/.
Cucurachi, S., Van Der Giesen, C., & Guinée, J. (2018). Ex-ante LCA of emerging technologies. Procedia CIRP, 69, 463–468. https://doi.org/10.1016/j.procir.2017.11.005.
Cui, J., Wang, C., Zhang, J., & Zheng, Y. (2021). The effectiveness of China’s regional carbon market pilots in reducing firm emissions. Proceedings of the National Academy of Sciences, 118(52), Article e2109912118. https://doi.org/10.1073/pnas.2109912118.
Cullenward, D., & Victor, D. G. (2020). Making climate policy work. Polity Press.
Cummings, C., Lin, S., & Trump, B. (2017). Public perceptions of climate geoengineering: A systematic review of the literature. Climate Research, 73(3), 247–264. https://doi.org/10.3354/cr01475.
Cusworth, D. H., Duren, R. M., Ayasse, A. K., Jiorle, R., Howell, K., Aubrey, A., Green, R. O., Eastwood, M. L., Chapman, J. W., Thorpe, A. K., Heckler, J., Asner, G. P., Smith, M. L., Thoma, E., Krause, M. J., Heins, D., & Thorneloe, S. (2024). Quantifying methane emissions from United States landfills. Science, 383(6690), 1499–1504. https://doi.org/10.1126/science.adi7735.
Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., Miller, C. E., Yadav, V., Chapman, J. W., Eastwood, M. L., Green, R. O., Hmiel, B., Lyon, D. R., & Duren, R. M. (2022). Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States. Proceedings of the National Academy of Sciences, 119(38), Article e2202338119. https://doi.org/10.1073/pnas.2202338119.
Daniel, J. S., Solomon, S., Sanford, T. J., McFarland, M., Fuglestvedt, J. S., & Friedlingstein, P. (2012). Limitations of single-basket trading: Lessons from the Montreal Protocol for climate policy. Climatic Change, 111(2), 241–248. https://doi.org/10.1007/s10584-011-0136-3.
De Bernardi, M., Priano, M. E., Fernández, M. E., Gyenge, J., & Juliarena, M. P. (2022). Impact of land use change on soil methane fluxes and diffusivity in Pampean plains, Argentina. Agriculture, Ecosystems & Environment, 329, Article 107866. https://doi.org/10.1016/j.agee.2022.107866.
Deguillaume, L., Leriche, M., & Chaumerliac, N. (2005). Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60(5), 718–724. https://doi.org/10.1016/j.chemosphere.2005.03.052.
Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Cheah, Y.-W., Christianson, D., Alberto, Ma. C. R., Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G., … Jackson, R. B. (2021). FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 13(7), 3607–3689. https://doi.org/10.5194/essd-13-3607-2021.
Derwent, R. G. (2018). Hydrogen for heating: Atmospheric impacts, a literature review. UK Department for Business, Energy & Industrial Strategy.
Devinny, J. S., Deshusses, M. A., & Webster, T. S. (1998). Biofiltration for air pollution control. CRC Press. https://doi.org/10.1201/9781315138275.
Dietz, T., & Stern, P. C. (1995). Toward a theory of choice: Socially embedded preference construction. The Journal of Socio-Economics, 24(2), 261–279. https://doi.org/10.1016/1053-5357(95)90022-5.
D’Imperio, L., Li, B.-B., Tiedje, J. M., Oh, Y., Christiansen, J. R., Kepfer-Rojas, S., Westergaard-Nielsen, A., Brandt, K. K., Holm, P. E., Wang, P., Ambus, P., & Elberling, B. (2023). Spatial controls of methane uptake in upland soils across climatic and geological regions in Greenland. Communications Earth & Environment, 4(1), Article 461. https://doi.org/10.1038/s43247-023-01143-3.
Dion-Kirschner, H., Nguyen, N. H., Frankenberg, C., & Fischer, W. W. (2024). Evaluating the contribution of methanotrophy kinetics to uncertainty in the soil methane sink. Environmental Research Letters, 19(6), Article 064059. https://doi.org/10.1088/1748-9326/ad4c7a.
Dittmeyer, R., Klumpp, M., Kant, P., & Ozin, G. (2019). Crowd oil not crude oil. Nature Communications, 10(1), Article 1818. https://doi.org/10.1038/s41467-019-09685-x.
Dlamini, J. C., Cárdenas, L., Tesfamariam, E. H., Dunn, R., Hawkins, J., Blackwell, M., Evans, J., & Collins, A. (2022). Soil methane (CH4) fluxes in cropland with permanent pasture and riparian buffer strips with different vegetation. Journal of Plant Nutrition and Soil Science, 185(1), 132–144. https://doi.org/10.1002/jpln.202000473.
Doney, S., & Lubchenco, J. (2023, October 6). Marine carbon dioxide removal: Potential ways to harness the ocean to mitigate climate change. Whitehouse.Gov. https://www.whitehouse.gov/ostp/news-updates/2023/10/06/marine-carbon-dioxide-removal-potential-ways-to-harness-the-ocean-to-mitigate-climate-change/.
Dorsch, M. J., & Flachsland, C. (2017). A polycentric approach to global climate governance. Global Environmental Politics, 17(2), 45–64. https://doi.org/10.1162/GLEP_a_00400.
Dove, Z., Hernandez, A., Talati, S., & Jinnah, S. (2024). Global perceptions of solar geoengineering: A review and gap analysis. Energy Research and Social Science. https://doi.org/10.1016/j.erss.2024.103779.
Dreyfus, G. B., Xu, Y., Shindell, D. T., Zaelke, D., & Ramanathan, V. (2022). Mitigating climate disruption in time: A self-consistent approach for avoiding both near-term and long-term global warming. Proceedings of the National Academy of Sciences, 119(22), Article e2123536119. https://doi.org/10.1073/pnas.2123536119.
DSG (The Alliance for Just Deliberation on Solar Geoengineering). (2023a). Building solar geoengineering governance capacity. https://sgdeliberation.org/wp-content/uploads/2023/04/DSG-White-Paper_Capacity-Building.pdf.
DSG. (2023b). Key concepts and definitions: Governance. https://sgdeliberation.org/resources/definitions/#governance.
Dumont, M. (2023, October 18). Potential of methanotroph leaf inoculation. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Duncan, B., Anderson, D., Fiore, A., Joiner, J., Krotkov, N., Li, C., Millet, D., Nicely, J., Oman, L., St. Clair, J., Shutter, J., Souri, A., Strode, S., Weir, B., Wolfe, G., Worden, H., & Zhu, Q. (2024). Opinion: Beyond global means: Novel space-based approaches to indirectly constrain the concentrations, trends, and variations of tropospheric hydroxyl radical (OH). EGUsphere, 1–35. https://doi.org/10.5194/egusphere-2024-2331.
Dvorak, M. T., Armour, K. C., Frierson, D. M. W., Proistosescu, C., Baker, M. B., & Smith, C. J. (2022). Estimating the timing of geophysical commitment to 1.5 and 2.0°C of global warming. Nature Climate Change, 12(6), 547–552. https://doi.org/10.1038/s41558-022-01372-y.
Dyonisius, M. N., Petrenko, V. V., Smith, A. M., Hua, Q., Yang, B., Schmitt, J., Beck, J., Seth, B., Bock, M., Hmiel, B., Vimont, I., Menking, J. A., Shackleton, S. A., Baggenstos, D., Bauska, T. K., Rhodes, R. H., Sperlich, P., Beaudette, R., Harth, C., … Weiss, R. F. (2020). Old carbon reservoirs were not important in the deglacial methane budget. Science, 367(6480), 907–910. https://doi.org/10.1126/science.aax0504.
Edwards, M. R., Surana, K., Rathod, S., Biswas, N., & Bindl, M. (2024). Costs and key leverage points for atmospheric methane removal technologies. Paper Commissioned by the Committee on Atmospheric Methane Removal: Development of a Research Agenda. http://nap.nationalacademies.org/catalog/27157.
Eisenson, M., & Webb, R. (2023). Expert insights on best practices for community benefits agreements. Sabin Center for Climate Change Law. https://scholarship.law.columbia.edu/sabin_climate_change/206.
El Abbadi, S. H., Sherwin, E. D., Brandt, A. R., Luby, S. P., & Criddle, C. S. (2021). Displacing fishmeal with protein derived from stranded methane. Nature Sustainability, 5(1), 47–56. https://doi.org/10.1038/s41893-021-00796-2.
Elder, C. D., Thompson, D. R., Thorpe, A. K., Chandanpurkar, H. A., Hanke, P. J., Hasson, N., James, S. R., Minsley, B. J., Pastick, N. J., Olefeldt, D., Walter Anthony, K. M., & Miller, C. E. (2021). Characterizing methane emission hotspots from thawing permafrost. Global Biogeochemical Cycles, 35(12), Article e2020GB006922. https://doi.org/10.1029/2020GB006922.
Elvidge, C. D., Tuttle, B. T., Sutton, P. C., Baugh, K. E., Howard, A. T., Milesi, C., Bhaduri, B., & Nemani, R. (2007). Global distribution and density of constructed impervious surfaces. Sensors, 7(9), 1962–1979. https://doi.org/10.3390/s7091962.
Engram, M., Anthony, K., Sachs, T., Kohnert, K., Serafimovich, A., Grosse, G., & Meyer, F. (2020). Remote sensing northern lake methane ebullition. Nature Climate Change, 10, 511–517. https://doi.org/10.1038/s41558-020-0762-8.
Environmental Justice Leadership Forum on Climate Change. (n.d.). Principles of climate justice. https://www.ejnet.org/ej/ejlf.pdf.
Esquivel-Elizondo, S., Hormaza Mejia, A., Sun, T., Shrestha, E., Hamburg, S. P., & Ocko, I. B. (2023). Wide range in estimates of hydrogen emissions from infrastructure. Frontiers in Energy Research, 11, Article 1207208. https://doi.org/10.3389/fenrg.2023.1207208.
Etiope, G., Ciotoli, G., Schwietzke, S., & Schoell, M. (2019). Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 11(1), 1–22. https://doi.org/10.5194/essd-11-1-2019.
Etiope, G., & Schwietzke, S. (2019). Global geological methane emissions: An update of top-down and bottom-up estimates. Elementa: Science of the Anthropocene, 7:47. https://doi.org/10.1525/elementa.383.
Eyer, S., Stadie, N. P., Borgschulte, A., Emmenegger, L., & Mohn, J. (2014). Methane preconcentration by adsorption: A methodology for materials and conditions selection. Adsorption, 20(5–6), 657–666. https://doi.org/10.1007/s10450-014-9609-9.
Fairbrother, M. (2016). Geoengineering, moral hazard, and trust in climate science: Evidence from a survey experiment in Britain. Climatic Change, 139(3–4), 477–489. https://doi.org/10.1007/s10584-016-1818-7.
Farquharson, L. M., Romanovsky, V. E., Kholodov, A., & Nicolsky, D. (2022). Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nature Geoscience, 15(6), 475–481. https://doi.org/10.1038/s41561-022-00952-z.
FAO (Food and Agriculture Organization). (2020, May 7). Land use in agriculture by the numbers. https://www.fao.org/sustainability/news/detail/en/c/1274219.
Feng, H., Guo, J., Ma, X., Han, M., Kneeshaw, D., Sun, H., Malghani, S., Chen, H., & Wang, W. (2022). Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytologist, 233(1), 182–193. https://doi.org/10.1111/nph.17778.
Feng, L., Palmer, P. I., Parker, R. J., Lunt, M. F., & Bösch, H. (2023). Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmospheric Chemistry and Physics, 23(8), 4863–4880. https://doi.org/10.5194/acp-23-4863-2023.
Feng, L., Palmer, P. I., Zhu, S., Parker, R. J., & Liu, Y. (2022). Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nature Communications, 13(1), Article 1378. https://doi.org/10.1038/s41467-022-28989-z.
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018.
Fiore, A. M., Mickley, L. J., Zhu, Q., & Baublitz, C. B. (2024). Climate and tropospheric oxidizing capacity. Annual Review of Earth and Planetary Sciences, 52, 321–349. https://doi.org/10.1146/annurev-earth-032320-090307.
Firstpost (Director). (2023, December 2). COP28 Summit 2023 LIVE: US’ John Kerry attends session on methane and other non-CO2 greenhouse gases [Video recording]. https://www.youtube.com/watch?v=_xQvI3D5E0A.
Fischhoff, B. (1989). Helping the public make health risk decisions. In V. T. Covello, D. B. McCallum, & M. T. Pavlova (Eds.), Effective risk communication (pp. 111–116). Springer US. https://doi.org/10.1007/978-1-4613-1569-8_17.
Food & Water Watch. (2022). Carbon capture and sequestration: Fossil fuels’ billion-dollar bailout [Fact sheet]. https://www.foodandwaterwatch.org/wp-content/uploads/2022/08/FSW_2208_CCS_Subsidies.pdf.
Forster, P. M., Smith, C. J., Walsh, T., Lamb, W. F., Lamboll, R., Hauser, M., Ribes, A., Rosen, D., Gillett, N., Palmer, M. D., Rogelj, J., von Schuckmann, K., Seneviratne, S. I., Trewin, B., Zhang, X., Allen, M., Andrew, R., Birt, A., Borger, A., … Zhai, P. (2023). Indicators of global climate change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth System Science Data, 15(6), 2295–2327. https://doi.org/10.5194/essd-15-2295-2023.
Foster, G. (2024, February 16). Adjusted global temperature data. Open Mind. https://tamino.wordpress.com/2024/02/16/adjusted-global-temperature-data.
France, J. L., Lunt, M. F., Andrade, M., Moreno, I., Ganesan, A. L., Lachlan-Cope, T., Fisher, R. E., Lowry, D., Parker, R. J., Nisbet, E. G., & Jones, A. E. (2022). Very large fluxes of methane measured above Bolivian seasonal wetlands. Proceedings of the National Academy of Sciences, 119(32), Article e2206345119. https://doi.org/10.1073/pnas.2206345119.
Frenzel, P., Rothfuss, F., & Conrad, R. (1992). Oxygen profiles and methane turnover in a flooded rice microcosm. Biology and Fertility of Soils, 14(2), 84–89. https://doi.org/10.1007/BF00336255.
Frischknecht, R., Stolz, P., Krebs, L., de Wild-Scholten, M., Sinha, P., & Heath, G. (2020). Life cycle inventories and life cycle assessments of photovoltaic systems: IEA PVPS task 12: PV sustainability. https://doi.org/10.2172/2308831.
Fujimori, S., Su, X., Liu, J.-Y., Hasegawa, T., Takahashi, K., Masui, T., & Takimi, M. (2016). Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus, 5(1), Article 1620. https://doi.org/10.1186/s40064-016-3235-9.
Gålfalk, M., Olofsson, G., Crill, P., & Bastviken, D. (2016). Making methane visible. Nature Climate Change, 6(4), 426–430. https://doi.org/10.1038/nclimate2877.
Gallo, N. D., Victor, D. G., & Levin, L. A. (2017). Ocean commitments under the Paris Agreement. Nature Climate Change, 7(11), 833–838. https://doi.org/10.1038/nclimate3422.
Gambelli, D., Vairo, D., Cuoco, E., & Zanoli, R. (2023). The role of stakeholder involvement in EU research and innovation policy: A case study of Technology Platform Organics. Organic Agriculture, 13(2), 293–308. https://doi.org/10.1007/s13165-023-00427-4.
Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M., Poulter, B., & Hornibrook, E. R. C. (2018). Spatially resolved isotopic source signatures of wetland methane emissions. Geophysical Research Letters, 45(8), 3737–3745. https://doi.org/10.1002/2018GL077536.
Gao, J., Zhu, Y., Zeng, L., Liu, X., Yang, Y., & Zhou, Y. (2024). Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. Journal of Environmental Management, 361, Article 121289. https://doi.org/10.1016/j.jenvman.2024.121289.
Gardiner, S. M., & Fragnière, A. (2018). The Tollgate Principles for the governance of geoengineering: Moving beyond the Oxford Principles to an ethically more robust approach. Ethics, Policy & Environment, 21(2), 143–174. https://doi.org/10.1080/21550085.2018.1509472.
Gatica, G., Fernández, Ma. E., Juliarena, Ma. P., & Gyenge, J. (2022). Does forest management affect the magnitude and direction of the afforestation effect on soil methane fluxes? A meta-analysis. Forest Ecology and Management, 507, Article 120009. https://doi.org/10.1016/j.foreco.2022.120009.
Gauci, V., Dise, N. B., Howell, G., & Jenkins, M. E. (2008). Suppression of rice methane emission by sulfate deposition in simulated acid rain. Journal of Geophysical Research, 113(G3). https://doi.org/10.1029/2007JG000501.
Gauci, V., Pangala, S. R., Shenkin, A., Barba, J., Bastviken, D., Figueiredo, V., Gomez, C., Enrich-Prast, A., Sayer, E., Stauffer, T., Welch, B., Elias, D., McNamara, N., Allen, M., & Malhi, Y. (2024). Global atmospheric methane uptake by upland tree woody surfaces. Nature, 631(8022), 796–800. https://doi.org/10.1038/s41586-024-07592-w.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D. W., Klett, T. R., Moore, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer, J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., & Wandrey, C. J. (2009). Assessment of undiscovered oil and gas in the Arctic. Science, 324(5931), 1175–1179. https://doi.org/10.1126/science.1169467.
Gelfand, I., Zenone, T., Jasrotia, P., Chen, J., Hamilton, S. K., & Robertson, G. P. (2011). Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proceedings of the National Academy of Sciences, 108(33), 13864–13869. https://doi.org/10.1073/pnas.1017277108.
Gibbs, H. K., & Salmon, J. M. (2015). Mapping the world’s degraded lands. Applied Geography, 57, 12–21. https://doi.org/10.1016/j.apgeog.2014.11.024.
Gillespie, M. (2024, August 16). Slowing the rate of warming and Lowering the risk of irreversible environmental damage [Personal communication].
Global Methane Hub. (2023, December 2). Enteric Fermentation Research & Development Accelerator, a $200M agricultural methane mitigation funding initiative [Press release]. https://www.globalmethanehub.org/2023/12/02/enteric-fermentation-research-development-accelerator-a-200m-agricultural-methane-mitigation-funding-initiative.
Gorgolewski, A. S., Caspersen, J. P., Vantellingen, J., & Thomas, S. C. (2023). Tree foliage is a methane sink in upland temperate forests. Ecosystems, 26(1), 174–186. https://doi.org/10.1007/s10021-022-00751-y.
Gorham, K. A., Abernethy, S., Jones, T. R., Hess, P., Mahowald, N. M., Meidan, D., Johnson, M. S., van Herpen, M. M. J. W., Xu, Y., Saiz-Lopez, A., Röckmann, T., Brashear, C. A., Reinhardt, E., & Mann, D. (2024). Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol. Atmospheric Chemistry and Physics, 24(9), 5659–5670. https://doi.org/10.5194/acp-24-5659-2024.
Graham, J. D., Rupp, J. A., & Schenk, O. (2015). Unconventional gas development in the USA: Exploring the risk perception issues. Risk Analysis, 35(10), 1770–1788. https://doi.org/10.1111/risa.12512.
Grant, N., Hawkes, A., Mittal, S., & Gambhir, A. (2021). Confronting mitigation deterrence in low-carbon scenarios. Environmental Research Letters, 16(6), Article 064099. https://doi.org/10.1088/1748-9326/ac0749.
Green, J. F. (2021). Does carbon pricing reduce emissions? A review of ex-post analyses. Environmental Research Letters, 16(4), Article 043004. https://doi.org/10.1088/1748-9326/abdae9.
Green, R., Thorpe, A., Brodrick, P., Chadwick, D., Lopez, A., Elder, C., Villanueva-Weeks, C., Fahlen, J., Coleman, R. W., Jensen, D., Bender, H., Vinckier, Q., Xiang, C., Olson-Duvall, W., Lundeen, S., & Thompson, D. (2023). EMIT L2B estimated methane plume complexes 60 m V001 [Dataset]. https://doi.org/10.5067/EMIT/EMITL2BCH4PLM.001.
Greyl, L., Ojo, G., Williams, C., Certoma, C., Greco, L., Ogbara, N., & Ohwojeheri, A. (2013). Digging deep corporate liability: Environmental justice strategies in the world of oil. EJOLT Report No. 9. Environmental Justice Organisations, Liabilities and Trade.
Gromov, S., Brenninkmeijer, C. A. M., & Jöckel, P. (2018). A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane. Atmospheric Chemistry and Physics, 18(13), 9831–9843. https://doi.org/10.5194/acp-18-9831-2018.
Grubert, E. (2023). Results from a survey of life cycle assessment-aligned socioenvironmental priorities in US and Australian communities hosting oil, natural gas, coal, and solar thermal energy production. Environmental Research: Infrastructure and Sustainability, 3(1), Article 015007. https://doi.org/10.1088/2634-4505/acbeda.
Grubert, E. (2024). Societal considerations, impacts, and public engagement for atmospheric methane removal technologies. Paper Commissioned by the Committee on Atmospheric Methane Removal: Development of a Research Agenda. http://nap.nationalacademies.org/catalog/27157.
Grubert, E., & Talati, S. (2024). The distortionary effects of unconstrained for-profit carbon dioxide removal and the need for early governance intervention. Carbon Management, 15(1), Article 2292111. https://doi.org/10.1080/17583004.2023.2292111.
Guckland, A., Flessa, H., & Prenzel, J. (2009). Controls of temporal and spatial variability of methane uptake in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). Soil Biology and Biochemistry, 41(8), 1659–1667. https://doi.org/10.1016/j.soilbio.2009.05.006.
Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in Microbiology, 12, Article 678057. https://www.frontiersin.org/articles/10.3389/fmicb.2021.678057.
Guggenheim, C., Brand, A., Bürgmann, H., Sigg, L., & Wehrli, B. (2019). Aerobic methane oxidation under copper scarcity in a stratified lake. Scientific Reports, 9(1), Article 4817. https://doi.org/10.1038/s41598-019-40642-2.
Guo, H., Flynn, C. M., Prather, M. J., Strode, S. A., Steenrod, S. D., Emmons, L., Lacey, F., Lamarque, J.-F., Fiore, A. M., Correa, G., Murray, L. T., Wolfe, G. M., St. Clair, J. M., Kim, M., Crounse, J., Diskin, G., DiGangi, J., Daube, B. C., Commane, R., … Wofsy, S. C. (2023). Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements–corrected. Atmospheric Chemistry and Physics, 23(1), 99–117. https://doi.org/10.5194/acp-23-99-2023.
Gupta, A., Möller, I., Biermann, F., Jinnah, S., Kashwan, P., Mathur, V., Morrow, D. R., & Nicholson, S. (2020). Anticipatory governance of solar geoengineering: Conflicting visions of the future and their links to governance proposals. Current Opinion in Environmental Sustainability, 45, 10–19. https://doi.org/10.1016/j.cosust.2020.06.004.
Gustafson, A., Rosenthal, S. A., Ballew, M. T., Goldberg, M. H., Bergquist, P., Kotcher, J. E., Maibach, E. W., & Leiserowitz, A. (2019). The development of partisan polarization over the Green New Deal. Nature Climate Change, 9(12), 940–944. https://doi.org/10.1038/s41558-019-0621-7.
Haegel, N. M., Atwater, H., Barnes, T., Breyer, C., Burrell, A., Chiang, Y.-M., De Wolf, S., Dimmler, B., Feldman, D., Glunz, S., Goldschmidt, J. C., Hochschild, D., Inzunza, R., Kaizuka, I., Kroposki, B., Kurtz, S., Leu, S., Margolis, R., Matsubara, K., … Bett, A. W. (2019). Terawatt-scale photovoltaics: Transform global energy. Science, 364(6443), 836–838. https://doi.org/10.1126/science.aaw1845.
Haegel, N. M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., Garabedian, R., Green, M., Glunz, S., Henning, H.-M., Holder, B., Kaizuka, I., Kroposki, B., Matsubara, K., Niki, S., Sakurai, K., Schindler, R. A., Tumas, W., Weber, E. R., Wilson, G., … Kurtz, S. (2017). Terawatt-scale photovoltaics: Trajectories and challenges. Science, 356(6334), 141–143. https://doi.org/10.1126/science.aal1288.
Haghnegahdar, M. A., Sun, J., Hultquist, N., Hamovit, N. D., Kitchen, N., Eiler, J., Ono, S., Yarwood, S. A., Kaufman, A. J., Dickerson, R. R., Bouyon, A., Magen, C., & Farquhar, J. (2023). Tracing sources of atmospheric methane using clumped isotopes. Proceedings of the National Academy of Sciences, 120(47), Article e2305574120. https://doi.org/10.1073/pnas.2305574120.
Hahad, O., Kröller-Schön, S., Daiber, A., & Münzel, T. (2019). The cardiovascular effects of noise. Deutsches Ärzteblatt International, 116(14), 245–250. https://doi.org/10.3238/arztebl.2019.0245.
Halmeenmäki, E., Heinonsalo, J., Putkinen, A., Santalahti, M., Fritze, H., & Pihlatie, M. (2017). Above- and belowground fluxes of methane from boreal dwarf shrubs and Pinus sylvestris seedlings. Plant and Soil, 420(1–2), 361–373. https://doi.org/10.1007/s11104-017-3406-7.
Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J. E., & Wu, W. (2016). Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Scientific Reports, 6(1), Article 24731. https://doi.org/10.1038/srep24731.
Hansen, J., Sato, M., & Kharecha, P. (2024). Global warming acceleration: Hope vs hopium. Columbia University. https://www.columbia.edu/~jeh1/mailings/2024/Hopium.MarchEmail.2024.03.29.pdf.
Hansen, J. E., Sato, M., Simons, L., Nazarenko, L. S., Sangha, I., Kharecha, P., Zachos, J. C., Von Schuckmann, K., Loeb, N. G., Osman, M. B., Jin, Q., Tselioudis, G., Jeong, E., Lacis, A., Ruedy, R., Russell, G., Cao, J., & Li, J. (2023). Global warming in the pipeline. Oxford Open Climate Change, 3(1), Article kgad008. https://doi.org/10.1093/oxfclm/kgad008.
Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., De Schryver, A., Humbert, S., Laurent, A., Sala, S., & Pant, R. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683–697. https://doi.org/10.1007/s11367-012-0489-5.
Hauschild, M. Z., Huijbregts, M., Jolliet, O., Macleod, M., Margni, M., Van De Meent, D., Rosenbaum, R. K., & McKone, T. E. (2008). Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environmental Science & Technology, 42(19), 7032–7037. https://doi.org/10.1021/es703145t.
Hausfather, Z. (2024, April 4). Factcheck: Why the recent “acceleration” in global warming is what scientists expect. Carbon Brief: Clear on Climate. https://www.carbonbrief.org/factcheck-why-the-recent-acceleration-in-global-warming-is-what-scientists-expect/.
Haya, B., Cullenward, D., Strong, A. L., Grubert, E., Heilmayr, R., Sivas, D. A., & Wara, M. (2020). Managing uncertainty in carbon offsets: Insights from California’s standardized approach. Climate Policy, 20(9), 1112–1126. https://doi.org/10.1080/14693062.2020.1781035.
He, L., Groom, J. D., Wilson, E. H., Fernandez, J., Konopka, M. C., Beck, D. A. C., & Lidstrom, M. E. (2023). A methanotrophic bacterium to enable methane removal for climate mitigation. Proceedings of the National Academy of Sciences, 120(35), Article e2310046120. https://doi.org/10.1073/pnas.2310046120.
Heath, G. A., Frischknecht, R., Itten, R., Wyss, F., Blanc, I., Raugei, M., Sinha, P., & Wade, A. (2015). Life cycle assessment of future photovoltaic electricity production from residential-scale systems operated in Europe (NREL/TP-6A20-73849; IEA-PVPS T12-05:2015). National Renewable Energy Laboratory, Golden, CO. https://doi.org/10.2172/1561524.
Helbig, N., Dawes, S., Dzhusupova, Z., Klievink, B., & Mkude, C. G. (2015). Stakeholder engagement in policy development: Observations and lessons from international experience. In M. Janssen, M. A. Wimmer, & A. Deljoo (Eds.), Policy practice and digital science (Vol. 10, pp. 177–204). Springer International Publishing. https://doi.org/10.1007/978-3-319-12784-2_9.
Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H., & Baldocchi, D. D. (2018). A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophysical Research Letters, 45(12), 6081–6091. https://doi.org/10.1029/2018GL077747.
Hernandez-Cortes, D., & Meng, K. C. (2023). Do environmental markets cause environmental injustice? Evidence from California’s carbon market. Journal of Public Economics, 217, Article 104786. https://doi.org/10.1016/j.jpubeco.2022.104786.
Hester, T. (2018). Liability and compensation. In M. B. Gerrard & T. Hester (Eds.), Climate engineering and the law (1st ed., pp. 224–268). Cambridge University Press. https://doi.org/10.1017/9781316661864.005.
Hickey, C., & Allen, M. (2024). Economics of enhanced methane oxidation relative to carbon dioxide removal. Environmental Research Letters, 19(6), Article 064043. https://doi.org/10.1088/1748-9326/ad4898.
Hiltbrunner, D., Zimmermann, S., Karbin, S., Hagedorn, F., & Niklaus, P. A. (2012). Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture. Global Change Biology, 18(12), 3664–3671. https://doi.org/10.1111/j.1365-2486.2012.02798.x.
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., & Dlugokencky, E. (2020). Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578(7795), 409–412. https://doi.org/10.1038/s41586-020-1991-8.
Ho, A., Reim, A., Kim, S. Y., Meima-Franke, M., Termorshuizen, A., De Boer, W., Van Der Putten, W. H., & Bodelier, P. L. E. (2015). Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Global Change Biology, 21(10), 3864–3879. https://doi.org/10.1111/gcb.12974.
Hofmann, B., Ingold, K., Stamm, C., Ammann, P., Eggen, R. I. L., Finger, R., Fuhrimann, S., Lienert, J., Mark, J., McCallum, C., Probst-Hensch, N., Reber, U., Tamm, L., Wiget, M., Winkler, M. S., Zachmann, L., & Hoffmann, S. (2023). Barriers to evidence use for sustainability: Insights from pesticide policy and practice. Ambio, 52(2), 425–439. https://doi.org/10.1007/s13280-022-01790-4.
Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P., & Schöpp, W. (2020). Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe–results from the GAINS model. Environmental Research Communications, 2(2), Article 025004. https://doi.org/10.1088/2515-7620/ab7457.
Holger, D. (2023, July 12). Rebuilding trust in carbon offsets faces uphill battle. Wall Street Journal: Sustainable Business. https://www.wsj.com/articles/rebuilding-trust-in-carbon-offsets-faces-uphill-battle-d7811603.
Hollmann, S., Regierer, B., Bechis, J., Tobin, L., & D’Elia, D. (2022). Ten simple rules on how to develop a stakeholder engagement plan. PLOS Computational Biology, 18(10), Article e1010520. https://doi.org/10.1371/journal.pcbi.1010520.
Holmes, C. D., Prather, M. J., Søvde, O. A., & Myhre, G. (2013). Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics, 13(1), 285–302. https://doi.org/10.5194/acp-13-285-2013.
Honegger, M., Poralla, M., Michaelowa, A., & Ahonen, H.-M. (2021). Who is paying for carbon dioxide removal? Designing policy instruments for mobilizing negative emissions technologies. Frontiers in Climate, 3. https://doi.org/10.3389/fclim.2021.672996.
Hoogendoorn, G., Sütterlin, B., & Siegrist, M. (2021). Tampering with nature: A systematic review. Risk Analysis, 41(1), 141–156. https://doi.org/10.1111/risa.13619.
Horowitz, H. M. (2024). Impacts of iron salt aerosol and hydroxyl radical release on the methane lifetime. Paper Commissioned by the Committee on Atmospheric Methane Removal: Development of a Research Agenda. http://nap.nationalacademies.org/catalog/27157.
Horton, J., Keith, D., & Honeggar, M. (2016). Implications of the Paris Agreement for carbon dioxide removal and solar geoengineering. Harvard Project on Climate Agreements. https://keith.seas.harvard.edu/files/tkg/files/horton_et_al._-_2016_-_implications_of_the_paris_agreement_for_carbon_dio.pdf.
Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Fernandez, R., Monks, S., Feng, W., Brauer, P., & Von Glasow, R. (2016). A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. Journal of Geophysical Research: Atmospheres, 121(23), 14271–14297. https://doi.org/10.1002/2016JD025756.
House, K. Z., Baclig, A. C., Ranjan, M., Van Nierop, E. A., Wilcox, J., & Herzog, H. J. (2011). Economic and energetic analysis of capturing CO2 from ambient air. Proceedings of the National Academy of Sciences, 108(51), 20428–20433. https://doi.org/10.1073/pnas.1012253108.
Howson, P. (2018). Slippery violence in the REDD+ forests of Central Kalimantan, Indonesia. Conservation and Society, 16(2), 136–146. https://doi.org/10.4103/cs.cs_16_150.
Huang, Y., Shao, Y., Bai, Y., Yuan, Q., Ming, T., Davies, P., Lu, X., de Richter, R., & Li, W. (2021). Feasibility of solar updraft towers as photocatalytic reactors for removal of atmospheric methane–The role of catalysts and rate limiting steps. Frontiers in Chemistry, 9. https://www.frontiersin.org/articles/10.3389/fchem.2021.745347.
Hubert, A.-M. (2017). Code of conduct for responsible geoengineering research. https://www.ucalgary.ca/sites/default/files/teams/463/revised-code-of-conduct-for-geoengineering-research-2017-hubert.pdf.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., & Yu, Z. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences, 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014.
Huijbregts, M. A. J., Hellweg, S., Frischknecht, R., Hendriks, H. W. M., Hungerbühler, K., & Hendriks, A. J. (2010). Cumulative energy demand as predictor for the environmental burden of commodity production. Environmental Science & Technology, 44(6):2189–2196. https://doi.org/10.1021/es902870s.
IAP2 (International Association for Public Participation). (2018). IAP2’s public participation spectrum. https://iap2.org.au/wp-content/uploads/2020/01/2018_IAP2_Spectrum.pdf.
ICAP (International Carbon Action Partnership). (2023). Emissions trading worldwide: 2023 ICAP status report. International Carbon Action Partnership. https://icapcarbonaction.com/en/publications/emissions-trading-worldwide-2023-icap-status-report.
IEA (International Energy Agency). (2019). The future of hydrogen: Seizing today’s opportunities. https://www.iea.org/reports/the-future-of-hydrogen.
IEA. (2021). The role of critical minerals in clean energy transitions. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions.
IEA. (2022). Executive summary: Direct air capture 2022. https://www.iea.org/reports/direct-air-capture-2022/executive-summary.
IEA. (2023a). Renewables 2023: Analysis and forecast to 2028. https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf.
IEA. (2023b). World energy outlook 2023. https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf.
IEA. (2024). COP28 tripling renewable capacity pledge. https://www.iea.org/reports/cop28-tripling-renewable-capacity-pledge.
Iguchi, H., Sato, I., Sakakibara, M., Yurimoto, H., & Sakai, Y. (2012). Distribution of methanotrophs in the phyllosphere. Bioscience, Biotechnology, and Biochemistry, 76(8), 1580–1583. https://doi.org/10.1271/bbb.120281.
Inglis, G. A. S. (2021). Bacteria in tree bark are hungry for methane. Communications Biology, 4(1), Article 738. https://doi.org/10.1038/s42003-021-02264-1.
Institute of Medicine. (1999). Toward environmental justice: Research, education, and health policy needs. National Academies Press. https://doi.org/10.17226/6034.
Iowa Technology Institute. (n.d.). Technology readiness level. https://iti.uiowa.edu/technology-readiness-level-trl.
IPCC (Intergovernmental Panel on Climate Change). (2018). Global warming of 1.5°C: IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157940.
IPCC. (2021). Climate change 2021—The physical science basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896.
IPCC. (2023a). Climate change 2022—Impacts, adaptation and vulnerability: Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009325844.
IPCC (Ed.). (2023b). Climate change 2022—Mitigation of climate change: Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157926.
IPCC (Ed.). (2023c). Summary for policymakers. In Climate change 2022—Mitigation of climate change (1st ed., pp. 3–48). Cambridge University Press. https://doi.org/10.1017/9781009157926.001.
Iranpour, R., Cox, H. H. J., Deshusses, M. A., & Schroeder, E. D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environmental Progress, 24(3), 254–267. https://doi.org/10.1002/ep.10077.
Isaksen, I. S. A., Gauss, M., Myhre, G., Walter Anthony, K. M., & Ruppel, C. (2011). Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochemical Cycles, 25(2). https://doi.org/10.1029/2010GB003845.
IWG (Interagency Working Group on Social Cost of Greenhouse Gases). (2021). Technical support document: Social cost of carbon, methane, and nitrous oxide: Interim estimates under Executive Order 13990. https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf.
Jackson, R. (2024). Into the clear blue sky. https://www.netgalley.com/catalog/book/332775.
Jackson, R. B., Saunois, M., Martinez, A., Canadell, J. G., Yu, X., Li, M., Poulter, B., Raymond, P. A., Regnier, P., Ciais, P., Davis, S. J., & Patra, P. K. (2024). Human activities now fuel two-thirds of global methane emissions. Environmental Research Letters, 19(10), Article 101002. https://doi.org/10.1088/1748-9326/ad6463.
Jackson, R. B., Abernethy, S., Canadell, J. G., Cargnello, M., Davis, S. J., Féron, S., Fuss, S., Heyer, A. J., Hong, C., Jones, C. D., Damon Matthews, H., O’Connor, F. M., Pisciotta, M., Rhoda, H. M., de Richter, R., Solomon, E. I., Wilcox, J. L., & Zickfeld, K. (2021). Atmospheric methane removal: A research agenda. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2210), Article 20200454. https://doi.org/10.1098/rsta.2020.0454.
Jackson, R. B., & Salzman, J. (2010). Pursuing geoengineering for atmospheric restoration. Issues in Science and Technology, 26(4), 67–76.
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., Bergamaschi, P., Niwa, Y., Segers, A., & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), Article 071002. https://doi.org/10.1088/1748-9326/ab9ed2.
Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M., & Field, C. B. (2019). Methane removal and atmospheric restoration. Nature Sustainability, 2(6), 436–438. https://doi.org/10.1038/s41893-019-0299-x.
Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press.
Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., & Duren, R. M. (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22(14), 9617–9646. https://doi.org/10.5194/acp-22-9617-2022.
Jarratt-Snider, K., & Nielsen, M. O. (2020). Indigenous environmental justice. University of Arizona Press.
Jeffrey, L. C., Maher, D. T., Chiri, E., Leung, P. M., Nauer, P. A., Arndt, S. K., Tait, D. R., Greening, C., & Johnston, S. G. (2021). Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications, 12(1), Article 2127. https://doi.org/10.1038/s41467-021-22333-7.
Jeffrey, L. C., Moras, C. A., Tait, D. R., Johnston, S. G., Call, M., Sippo, J. Z., Jeffrey, N. C., Laicher-Edwards, D., & Maher, D. T. (2023). Large methane emissions from tree stems complicate the wetland methane budget. Journal of Geophysical Research: Biogeosciences, 128(12), Article e2023JG007679. https://doi.org/10.1029/2023JG007679.
Jenkins, J. D. (2014). Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design? Energy Policy, 69, 467–477. https://doi.org/10.1016/j.enpol.2014.02.003.
Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., Van Groenigen, K. J., & Linquist, B. (2019). Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47–54. https://doi.org/10.1016/j.fcr.2019.02.010.
Jiménez, J. D. L. C., & Pedersen, O. (2023). Mitigation of greenhouse gas emissions from rice via manipulation of key root traits. Rice, 16(1), Article 24. https://doi.org/10.1186/s12284-023-00638-z.
Jinnah, S. (2003). Emissions trading under the Kyoto Protocol: NAFTA and WTO concerns. Georgetown International Environmental Law Review, 15(1), 709–761.
Jinnah, S., Bedsworth, L., Talati, S., Gerrard, M. B., Kleeman, M., Lempert, R., Mach, K., Nurse, L., Patrick, H. O., & Sugiyama, M. (2024). Final report of the SCoPEx Advisory Committee. https://scopexac.com/finalreport.
Jinnah, S., & Lindsay, A. (2016). Diffusion through issue linkage: Environmental norms in US trade agreements. Global Environmental Politics, 16(3), 41–61. https://doi.org/10.1162/GLEP_a_00365.
Jinnah, S., & Nicholson, S. (2019). The hidden politics of climate engineering. Nature Geoscience, 12(11), 876–879. https://doi.org/10.1038/s41561-019-0483-7.
Jinnah, S., Talati, S., Bedsworth, L., Gerrard, M., Kleeman, M., Lempert, R., Mach, K., Nurse, L., Patrick, H. O., & Sugiyama, M. (2024). Do small outdoor geoengineering experiments require governance? Science, 385(6709), 600–603. https://doi.org/10.1126/science.adn2853.
Johannisson, J., & Hiete, M. (2022). Exploring the photocatalytic total oxidation of methane through the lens of a prospective LCA. Atmospheric Environment: X, 16, Article 100190. https://doi.org/10.1016/j.aeaoa.2022.100190.
Jones, W., Bower, G., O’Rear, E. G., King, B., & Pastorek, N. (2023, October 12). Direct air capture workforce development: Opportunities by occupation. Rhodium Group.
Kahan, D. M., Jenkins-Smith, H., Tarantola, T., Silva, C. L., & Braman, D. (2015). Geoengineering and climate change polarization: Testing a two-channel model of science communication. The ANNALS of the American Academy of Political and Social Science, 658(1), 192–222. https://doi.org/10.1177/0002716214559002.
Karlamangla, S., & Flavelle, C. (2024, June 5). California city leaders end cloud-brightening test, overruling staff. The New York Times. https://www.nytimes.com/2024/06/05/climate/alameda-cloud-brightening-geoengineering.html.
Karris, M. Y., Dubé, K., & Moore, A. A. (2020). What lessons it might teach us? Community engagement in HIV research. Current Opinion in HIV and AIDS, 15(2), 142–149. https://doi.org/10.1097/COH.0000000000000605.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., & Rudich, Y. (2005). The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences, 102(32), 11207–11212. https://doi.org/10.1073/pnas.0505191102.
Kemerink-Seyoum, J. S., Tadesse, T. M., Mersha, W. K., Duker, A. E. C., & De Fraiture, C. (2018). Sharing benefits or fueling conflicts? The elusive quest for organizational blueprints in climate financed forestry projects in Ethiopia. Global Environmental Change, 53, 265–272. https://doi.org/10.1016/j.gloenvcha.2018.10.007.
Kerschbamer, R., Neururer, D., & Sutter, M. (2016). Insurance coverage of customers induces dishonesty of sellers in markets for credence goods. Proceedings of the National Academy of Sciences, 113(27), 7454–7458. https://doi.org/10.1073/pnas.1518015113.
Khabiri, B., Ferdowsi, M., Buelna, G., Jones, J. P., & Heitz, M. (2022). Bioelimination of low methane concentrations emitted from wastewater treatment plants: A review. Critical Reviews in Biotechnology, 42(3), 450–467. https://doi.org/10.1080/07388551.2021.1940830.
Kim, K., Daly, E. J., & Hernandez-Ramirez, G. (2021). Perennial grain cropping enhances the soil methane sink in temperate agroecosystems. Geoderma, 388, Article 114931. https://doi.org/10.1016/j.geoderma.2021.114931.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., … Zeng, G. (2013). Three decades of global methane sources and sinks. Nature Geoscience, 6(10), 813–823. https://doi.org/10.1038/ngeo1955.
Kleber, G. E., Hodson, A. J., Magerl, L., Mannerfelt, E. S., Bradbury, H. J., Zhu, Y., Trimmer, M., & Turchyn, A. V. (2023). Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic. Nature Geoscience, 16(7), 597–604. https://doi.org/10.1038/s41561-023-01210-6.
Kleinen, T., Gromov, S., Steil, B., & Brovkin, V. (2021). Atmospheric methane underestimated in future climate projections. Environmental Research Letters, 16(9), Article 094006. https://doi.org/10.1088/1748-9326/ac1814.
Kosar, U., & Suarez, V. (2021). Removing forward. Centering equity and justice in a carbon-removing future. Carbon 180. https://carbon180.org/wp-content/uploads/2024/01/Carbon180-RemovingForward.pdf.
Koziel, J. (2023, October 18). Co-removal of greenhouse gases with UV light and photocatalysis. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Kritee, K., Nair, D., Zavala-Araiza, D., Proville, J., Rudek, J., Adhya, T. K., Loecke, T., Esteves, T., Balireddygari, S., Dava, O., Ram, K., Abhilash, S. R., Madasamy, M., Dokka, R. V., Anandaraj, D., Athiyaman, D., Reddy, M., Ahuja, R., & Hamburg, S. P. (2018). High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of the National Academy of Sciences, 115(39), 9720–9725. https://doi.org/10.1073/pnas.1809276115.
Krogsbøll, M., Russell, H. S., & Johnson, M. S. (2023). A high efficiency gas phase photoreactor for eradication of methane from low-concentration sources. Environmental Research Letters, 19(1), Article 014017. https://doi.org/10.1088/1748-9326/ad0e33.
Krug, J. H. A. (2018). Accounting of GHG emissions and removals from forest management: A long road from Kyoto to Paris. Carbon Balance and Management, 13(1), Article 1. https://doi.org/10.1186/s13021-017-0089-6.
Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter Anthony, K., McGuire, A. D., & Olefeldt, D. (2021). BAWLD-CH4: A comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151–5189. https://doi.org/10.5194/essd-13-5151-2021.
La, H., Hettiaratchi, J. P. A., Achari, G., & Dunfield, P. F. (2018). Biofiltration of methane. Bio-resource Technology, 268, 759–772. https://doi.org/10.1016/j.biortech.2018.07.043.
Lacroix, K., Goldberg, M. H., Gustafson, A., Rosenthal, S. A., & Leiserowitz, A. (2021). Different names for “natural gas” influence public perception of it. Journal of Environmental Psychology, 77, Article 101671. https://doi.org/10.1016/j.jenvp.2021.101671.
Lage Filho, N. M., Cardoso, A. D. S., Azevedo, J. C. D., Macedo, V. H. M., Domingues, F. N., Faturi, C., Silva, T. C. D., Ruggieri, A. C., Reis, R. A., & Do Rêgo, A. C. (2023). How does land use change affect the methane emission of soil in the Eastern Amazon? Frontiers in Environmental Science, 11, Article 1244152. https://doi.org/10.3389/fenvs.2023.1244152.
Lamarche-Gagnon, G., Wadham, J. L., Sherwood Lollar, B., Arndt, S., Fietzek, P., Beaton, A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkings, J. R., Kohler, T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., & Stibal, M. (2019). Greenland melt drives continuous export of methane from the ice-sheet bed. Nature, 565(7737), 73–77. https://doi.org/10.1038/s41586-018-0800-0.
Lamb, W. F., Gasser, T., Roman-Cuesta, R. M., Grassi, G., Gidden, M. J., Powis, C. M., Geden, O., Nemet, G., Pratama, Y., Riahi, K., Smith, S. M., Steinhauser, J., Vaughan, N. E., Smith, H. B., & Minx, J. C. (2024). The carbon dioxide removal gap. Nature Climate Change, 14, 644–651. https://doi.org/10.1038/s41558-024-01984-6.
Lamont, J., & Favor, C. (2017). Distributive justice. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2017/entries/justice-distributive/.
Lan, X., Tans, P., & Thoning, K. W. (2024). Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2024-08. https://doi.org/10.15138/P8XG-AA10.
Langhorst, T., McCord, S., Zimmermann, A., Müller, L., Cremonese, L., Strunge, T., Wang, Y., Zaragoza, A. V., Wunderlich, J., Marxen, A., Armstrong, K., Buchner, G., Kätelhön, A., Bachmann, M., Sternberg, A., Michailos, S., Naims, H., Winter, B., Roskosch, D., … Sick, V. (2022). Techno-Economic Assessment & Life Cycle Assessment guidelines for CO2 utilization (Version 2.0). https://doi.org/10.7302/4190.
Lark, T. J., Hendricks, N. P., Smith, A., Pates, N., Spawn-Lee, S. A., Bougie, M., Booth, E. G., Kucharik, C. J., & Gibbs, H. K. (2022). Environmental outcomes of the US Renewable Fuel Standard. Proceedings of the National Academy of Sciences, 119(9), Article e2101084119. https://doi.org/10.1073/pnas.2101084119.
Laughner, J. L., Neu, J. L., Schimel, D., Wennberg, P. O., Barsanti, K., Bowman, K. W., Chatterjee, A., Croes, B. E., Fitzmaurice, H. L., Henze, D. K., Kim, J., Kort, E. A., Liu, Z., Miyazaki, K., Turner, A. J., Anenberg, S., Avise, J., Cao, H., Crisp, D., … Zeng, Z.-C. (2021). Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences, 118(46), Article e2109481118. https://doi.org/10.1073/pnas.2109481118.
Lavery, J. V. (2018). Building an evidence base for stakeholder engagement. Science, 361(6402), 554–556. https://doi.org/10.1126/science.aat8429.
Lawrence, M. G., Williams, S., Nanz, P., & Renn, O. (2022). Characteristics, potentials, and challenges of transdisciplinary research. One Earth, 5(1), 44–61. https://doi.org/10.1016/j.oneear.2021.12.010.
Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., & Allen, M. R. (2021). FaIRv2.0.0: A generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 14(5), 3007–3036. https://doi.org/10.5194/gmd-14-3007-2021.
Li, H., Lin, L., Peng, Y., Hao, Y., Li, Z., Li, J., Yu, M., Li, X., Lu, Y., Gu, W., & Zhang, B. (2024). Biochar’s dual role in greenhouse gas emissions: Nitrogen fertilization dependency and mitigation potential. Science of the Total Environment, 917, Article 170293. https://doi.org/10.1016/j.scitotenv.2024.170293.
Li, Q., Lin, B., Yuan, D., & Chen, G. (2015). Demonstration and its validation for ventilation air methane (VAM) thermal oxidation and energy recovery project. Applied Thermal Engineering, 90, 75–85. https://doi.org/10.1016/j.applthermaleng.2015.06.089.
Li, Q., Meidan, D., Hess, P., Añel, J. A., Cuevas, C. A., Doney, S., Fernandez, R. P., van Herpen, M., Höglund-Isaksson, L., Johnson, M. S., Kinnison, D. E., Lamarque, J.-F., Röckmann, T., Mahowald, N. M., & Saiz-Lopez, A. (2023). Global environmental implications of atmospheric methane removal through chlorine-mediated chemistry-climate interactions. Nature Communications, 14(1), Article 4045. https://doi.org/10.1038/s41467-023-39794-7.
Li, Q., Peng, C., Zhang, J., Li, Y., & Song, X. (2021). Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest. Scientific Reports, 11, Article 5578. https://doi.org/10.1038/s41598-021-84422-3.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., Wilson, C. J., Yabuki, H., & Zona, D. (2016). Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9(4), 312–318. https://doi.org/10.1038/ngeo2674.
Limbri, H., Gunawan, C., Thomas, T., Smith, A., Scott, J., & Rosche, B. (2014). Coal-packed methane biofilter for mitigation of greenhouse gas emissions from coal mine ventilation air. PLoS ONE, 9(4), Article e94641. https://doi.org/10.1371/journal.pone.0094641.
Lindsey, R. (2009). Climate and Earth’s energy budget. NASA Earth Observatory. https://earthobservatory.nasa.gov/features/EnergyBalance.
Liu, X., Zhou, J., Chi, Z., Zheng, J., Li, L., Zhang, X., Zheng, J., Cheng, K., Bian, R., & Pan, G. (2019). Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. CATENA, 179, 20–28. https://doi.org/10.1016/j.catena.2019.03.033.
Liu, Z., Li, H., Wang, T., Huang, N., Huang, Z., Luo, Y., Yan, W., & Baoyin, T. (2021). Grassland restoration measures alter soil methane uptake by changing community phylogenetic structure and soil properties. Ecological Indicators, 133, Article 108368. https://doi.org/10.1016/j.ecolind.2021.108368.
Liu, Z., Xu, B., Jiang, Y.-J., Zhou, Y., Sun, X., Wang, Y., & Zhu, W. (2023). Photocatalytic conversion of methane: Current state of the art, challenges, and future perspectives. ACS Environmental Au, 3(5), 252–276. https://doi.org/10.1021/acsenvironau.3c00002.
Lovelock, J. E. (1977). Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267(5606), 32. https://doi.org/10.1038/267032a0.
Low, S., Baum, C. M., & Sovacool, B. K. (2022). Taking it outside: Exploring social opposition to 21 early-stage experiments in radical climate interventions. Energy Research & Social Science, 90, Article 102594. https://doi.org/10.1016/j.erss.2022.102594.
Low, S., & Buck, H. J. (2020). The practice of responsible research and innovation in “climate engineering.” WIREs Climate Change, 11(3), e644. https://doi.org/10.1002/wcc.644.
Low, S., Fritz, L., Baum, C. M., & Sovacool, B. K. (2024). Public perceptions on solar geoengineering from focus groups in 22 countries. Communications Earth & Environment, 5(1), Article 352. https://doi.org/10.1038/s43247-024-01518-0.
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., Fujimori, S., Havlík, P., Iyer, G., Keramidas, K., Kitous, A., Pehl, M., Krey, V., Riahi, K., Saveyn, B., … Kriegler, E. (2018). Residual fossil CO2 emissions in 1.5–2°C pathways. Nature Climate Change, 8(7), 626–633. https://doi.org/10.1038/s41558-018-0198-6.
Ludwig, S. M., Schiferl, L., Hung, J., Natali, S. M., & Commane, R. (2024). Resolving heterogeneous fluxes from tundra halves the growing season carbon budget. Biogeosciences, 21(5), 1301–1321. https://doi.org/10.5194/bg-21-1301-2024.
Lyons, K., & Westoby, P. (2014). Carbon colonialism and the new land grab: Plantation forestry in Uganda and its livelihood impacts. Journal of Rural Studies, 36, 13–21. https://doi.org/10.1016/j.jrurstud.2014.06.002.
Madronich, S., Lee-Taylor, J. M., Wagner, M., Kyle, J., Hu, Z., & Landolfi, R. (2021). Estimation of skin and ocular damage avoided in the United States through implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer. ACS Earth and Space Chemistry, 5(8), 1876–1888. https://doi.org/10.1021/acsearthspacechem.1c00183.
Mahmud, R., Moni, S. M., High, K., & Carbajales-Dale, M. (2021). Integration of techno-economic analysis and life cycle assessment for sustainable process design–A review. Journal of Cleaner Production, 317, Article 128247. https://doi.org/10.1016/j.jclepro.2021.128247.
Majdinasab, A., & Yuan, Q. (2017). Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecological Engineering, 104, 116–130. https://doi.org/10.1016/j.ecoleng.2017.04.015.
Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, 134, 127–136. https://doi.org/10.1016/j.envsci.2022.03.027.
Markusson, N., McLaren, D., Szerszynski, B., Tyfield, D., & Willis, R. (2022). Life in the hole: Practices and emotions in the cultural political economy of mitigation deterrence. European Journal of Futures Research, 10(1), Article 2. https://doi.org/10.1186/s40309-021-00186-z.
Markusson, N., McLaren, D., & Tyfield, D. (2018). Towards a cultural political economy of mitigation deterrence by negative emissions technologies (NETs). Global Sustainability, 1, e10. https://doi.org/10.1017/sus.2018.10.
Martinez-Cruz, K., Sepulveda-Jauregui, A., Walter Anthony, K., & Thalasso, F. (2015). Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeosciences, 12(15), 4595–4606. https://doi.org/10.5194/bg-12-4595-2015.
Mathur, V. N., Afionis, S., Paavola, J., Dougill, A. J., & Stringer, L. C. (2014). Experiences of host communities with carbon market projects: Towards multi-level climate justice. Climate Policy, 14(1), 42–62. https://doi.org/10.1080/14693062.2013.861728.
Mazurek, J. (2023, April 20). Atmospheric methane removal: Development of a research agenda (Committee meeting #1) [Video recording]. https://youtu.be/sDdwo4RiYEc.
McDaniel, M. D., Saha, D., Dumont, M. G., Hernández, M., & Adams, M. A. (2019). The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems, 22(6), 1424–1443. https://doi.org/10.1007/s10021-019-00347-z.
McGregor, D., Whitaker, S., & Sritharan, M. (2020). Indigenous environmental justice and sustainability. Current Opinion in Environmental Sustainability, 43, 35–40. https://doi.org/10.1016/j.cosust.2020.01.007.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., & Roulet, N. (2009). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523–555. https://doi.org/10.1890/08-2025.1.
McLaren, D., & Markusson, N. (2020). The co-evolution of technological promises, modelling, policies and climate change targets. Nature Climate Change, 10(5), 392–397. https://doi.org/10.1038/s41558-020-0740-1.
McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B., & Markusson, N. O. (2019). Beyond “net-zero”: A case for separate targets for emissions reduction and negative emissions. Frontiers in Climate, 1. https://doi.org/10.3389/fclim.2019.00004.
McQueen, N., Psarras, P., Pilorgé, H., Liguori, S., He, J., Yuan, M., Woodall, C. M., Kian, K., Pierpoint, L., Jurewicz, J., Lucas, J. M., Jacobson, R., Deich, N., & Wilcox, J. (2020). Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States. Environmental Science & Technology, 54(12), 7542–7551. https://doi.org/10.1021/acs.est.0c00476.
Meidan, D., Li, Q., Cuevas, C. A., Doney, S. C., Fernandez, R. P., van Herpen, M. M. J. W., Johnson, M. S., Kinnison, D. E., Li, L., Hamilton, D. S., Saiz-Lopez, A., Hess, P., & Mahowald, N. M. (2024). Evaluating the potential of iron-based interventions in methane reduction and climate mitigation. Environmental Research Letters, 19(5), Article 054023. https://doi.org/10.1088/1748-9326/ad3d72.
Ménard, C., Ramirez, A. A., Nikiema, J., & Heitz, M. (2012). Biofiltration of methane and trace gases from landfills: A review. Environmental Reviews, 20(1), 40–53. https://doi.org/10.1139/a11-022.
Meng, C., Wang, F., Yang, K., Shock, C. C., Engel, B. A., Zhang, Y., Tao, L., & Gu, X. (2020). Small wetted proportion of drip irrigation and non-mulched treatment with manure application enhanced methane uptake in upland field. Agricultural and Forest Meteorology, 281, Article 107821. https://doi.org/10.1016/j.agrformet.2019.107821.
Merk, C., Pönitzsch, G., & Rehdanz, K. (2016). Knowledge about aerosol injection does not reduce individual mitigation efforts. Environmental Research Letters, 11(5), Article 054009. https://doi.org/10.1088/1748-9326/11/5/054009.
Merk, C., & Wagner, G. (2024). Presenting balanced geoengineering information has little effect on mitigation engagement. Climatic Change, 177(1), Article 11. https://doi.org/10.1007/s10584-023-03671-5.
Meyer, L. (2021). Intergenerational justice. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2021/entries/justice-intergenerational/.
Michaelowa, A., Honegger, M., Poralla, M., Winkler, M., Dalfiume, S., & Nayak, A. (2023). International carbon markets for carbon dioxide removal. PLOS Climate, 2(5), Article e0000118. https://doi.org/10.1371/journal.pclm.0000118.
Michaelowa, A., Shishlov, I., & Brescia, D. (2019). Evolution of international carbon markets: Lessons for the Paris Agreement. WIREs Climate Change, 10(6), e613. https://doi.org/10.1002/wcc.613.
Mikkelsen, M. K., Liisberg, J. B., van Herpen, M. M. J. W., Mikkelsen, K. V., & Johnson, M. S. (2024). Photocatalytic chloride-to-chlorine conversion by ionic iron in aqueous aerosols: A combined experimental, quantum chemical, and chemical equilibrium model study. Aerosol Research, 2(1), 31–47. https://doi.org/10.5194/ar-2-31-2024.
Miller, J. S., Dreyfus, G., Daniel, J. S., Willis, S., & Xu, Y. (2024). Beyond the single-basket mindset: A multi-gas approach to better constrain overshoot in near term warming. Environmental Research Letters, 19(9), Article 094001. https://doi.org/10.1088/1748-9326/ad6461.
Miller, K. E., Lai, C.-T., Friedman, E. S., Angenent, L. T., & Lipson, D. A. (2015). Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain. Soil Biology and Biochemistry, 83, 176–183. https://doi.org/10.1016/j.soilbio.2015.01.022.
Milne, S., & Mahanty, S. (2019). Value and bureaucratic violence in the green economy. Geoforum, 98, 133–143. https://doi.org/10.1016/j.geoforum.2018.11.003.
Ming, T., de Richter, R., Dietrich Oeste, F., Tulip, R., & Caillol, S. (2021). A nature-based negative emissions technology able to remove atmospheric methane and other greenhouse gases. Atmospheric Pollution Research, 12(5), Article 101035. https://doi.org/10.1016/j.apr.2021.02.017.
Ministry of Environment and Natural Resources. (2023, January 13). La experimentación con geoingeniería solar no será permitida en México. Gob.Mx. https://www.gob.mx/semarnat/prensa/la-experimentacion-con-geoingenieria-solar-no-sera-permitida-en-mexico.
Mokdad, A. H., Ballestros, K., Echko, M., Glenn, S., Olsen, H. E., Mullany, E., Lee, A., Khan, A. R., Ahmadi, A., Ferrari, A. J., Kasaeian, A., Werdecker, A., Carter, A., Zipkin, B., Sartorius, B., Serdar, B., Sykes, B. L., Troeger, C., Fitzmaurice, C., … Murray, C. J. L. (2018). The state of US health, 1990-2016: Burden of diseases, injuries, and risk factors among US states. JAMA, 319(14), 1444–1472. https://doi.org/10.1001/jama.2018.0158.
Morin, J., Brochard, G., Bergé, V., Rosset, A., Artous, S., Clavaguera, S., Strekowski, R. S., & Wortham, H. (2023). Uptake of m-xylene and VOC emissions by mineral photocatalytic paints of indoor air building interest. Environmental Science: Nano, 10(6), 1704–1714. https://doi.org/10.1039/D3EN00084B.
Morrow, D. R., Thompson, M. S., Anderson, A., Batres, M., Buck, H. J., Dooley, K., Geden, O., Ghosh, A., Low, S., Njamnshi, A., Noël, J., Táíwò, O. O., Talati, S., & Wilcox, J. (2020). Principles for thinking about carbon dioxide removal in just climate policy. One Earth, 3(2), 150–153. https://doi.org/10.1016/j.oneear.2020.07.015.
Mosavi, P. (2023). Manure, methane, and money: The anaerobic digester disaster in California. Animal Law Review, 29(1), 41–64.
Mosier, A., Schimel, D., Valentine, D., Bronson, K., & Parton, W. (1991). Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350(6316), 330–332. https://doi.org/10.1038/350330a0.
Mosier, A. R., Parton, W. J., Valentine, D. W., Ojima, D. S., Schimel, D. S., & Heinemeyer, O. (1997). CH4 and N2O fluxes in the Colorado shortgrass steppe: 2. Long-term impact of land use change. Global Biogeochemical Cycles, 11(1), 29–42. https://doi.org/10.1029/96GB03612.
Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., & Hornibrook, E. R. C. (2018). Soil Methanotrophy Model (MeMo v1.0): A process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development, 11(6), 2009–2032. https://doi.org/10.5194/gmd-11-2009-2018.
Murray, L. T., Fiore, A. M., Shindell, D. T., Naik, V., & Horowitz, L. W. (2021). Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. Proceedings of the National Academy of Sciences, 118(43), Article e2115204118. https://doi.org/10.1073/pnas.2115204118.
Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., & Alexander, B. (2014). Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmospheric Chemistry and Physics, 14(7), 3589–3622. https://doi.org/10.5194/acp-14-3589-2014.
Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., … Zeng, G. (2013). Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(10), 5277–5298. https://doi.org/10.5194/acp-13-5277-2013.
Nakatani, N., Ueda, M., Shindo, H., Takeda, K., & Sakugawa, H. (2007). Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples. Analytical Sciences, 23(9), 1137–1142. https://doi.org/10.2116/analsci.23.1137.
Nan, Q., Wang, C., Wang, H., Yi, Q., & Wu, W. (2020). Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Science of the Total Environment, 746, Article 141351. https://doi.org/10.1016/j.scitotenv.2020.141351.
NASEM (National Academies of Sciences, Engineering, and Medicine). (2018). Improving characterization of anthropogenic methane emissions in the United States. National Academies Press. https://doi.org/10.17226/24987.
NASEM. (2019). Negative emissions technologies and reliable sequestration: A research agenda. National Academies Press. https://doi.org/10.17226/25259.
NASEM. (2021a). Accelerating decarbonization of the U.S. energy system. National Academies Press. https://doi.org/10.17226/25932.
NASEM. (2021b). Reflecting sunlight: Recommendations for solar geoengineering research and research governance. National Academies Press. https://doi.org/10.17226/25762.
NASEM. (2022a). A research strategy for ocean-based carbon dioxide removal and sequestration. National Academies Press. https://doi.org/10.17226/26278.
NASEM. (2022b). Current methods for life cycle analyses of low-carbon transportation fuels in the United States. National Academies Press. https://doi.org/10.17226/26402.
NASEM. (2022c). Greenhouse gas emissions information for decision making: A framework going forward. National Academies Press. https://doi.org/10.17226/26641.
NASEM. (2023). Accelerating decarbonization in the United States: Technology, policy, and societal dimensions. National Academies Press. https://doi.org/10.17226/25931.
National Science and Technology Council. (2023, September). Charter of the Marine Carbon Dioxide Removal Fast Track Action Committee of the Subcommittee on Ocean Science and Technology National Science and Technology Council. https://www.noaa.gov/sites/default/files/2023-10/mCDR_FTAC_charter_2023_09_19_approved.pdf.
Nazaries, L., Tate, K. R., Ross, D. J., Singh, J., Dando, J., Saggar, S., Baggs, E. M., Millard, P., Murrell, J. C., & Singh, B. K. (2011). Response of methanotrophic communities to afforestation and reforestation in New Zealand. The ISME Journal, 5(11), 1832–1836. https://doi.org/10.1038/ismej.2011.62.
Net Zero Tracker. (2023). Net zero stocktake 2023. NewClimate Institute, Oxford Net Zero, Energy and Climate Intelligence Unit, and DataDriven EnviroLab. www.zerotracker.net/analysis/net-zero-stocktake-2023.
Newfoundland/Labrador Office of Public Engagement. (2023). Public engagement guide. https://www.gov.nl.ca/pep/files/Public-Engagement-Guide.pdf.
Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. S., Jöckel, P., Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, O., Murray, L. T., Myhre, G., Oman, L. D., Pitari, G., Pozzer, A., … Zeng, G. (2020). A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 20(3), 1341–1361. https://doi.org/10.5194/acp-20-1341-2020.
Nicholson, S., Jinnah, S., & Gillespie, A. (2018). Solar radiation management: A proposal for immediate polycentric governance. Climate Policy, 18(3), 322–334. https://doi.org/10.1080/14693062.2017.1400944.
Nisbet, E. G. (2023a). Slaying the methane minotaur. Proceedings of the National Academy of Sciences, 120(49), Article e2318019120. https://doi.org/10.1073/pnas.2318019120.
Nisbet, E. G. (2023b, October 17). The state of methane, 2023. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Michel, S. E., Lan, X., Röckmann, T., Denier van der Gon, H. A. C., Schmitt, J., Palmer, P. I., Dyonisius, M. N., Oh, Y., Fisher, R. E., Lowry, D., France, J. L., White, J. W. C., Brailsford, G., & Bromley, T. (2023). Atmospheric methane: Comparison between methane’s record in 2006–2022 and during glacial terminations. Global Biogeochemical Cycles, 37(8), Article e2023GB007875. https://doi.org/10.1029/2023GB007875.
NOAA (National Oceanic and Atmospheric Administration). (2023a, March 21). Ocean Climate Action Plan information. https://www.noaa.gov/interagency-ocean-policy/OCAP_Information.
NOAA. (2023b, September 7). Announcing $24.3M investment advancing marine carbon dioxide removal research. Ocean Acidification Program News. https://oceanacidification.noaa.gov/fy23-nopp-mcdr-awards/.
NRC (National Research Council). (2010). Hidden costs of energy: Unpriced consequences of energy production and use. National Academies Press. https://doi.org/10.17226/12794.
NRC. (2015a). Climate intervention: Carbon dioxide removal and reliable sequestration. National Academies Press. https://doi.org/10.17226/18805.
NRC. (2015b). Climate intervention: Reflecting sunlight to cool Earth. National Academies Press. https://doi.org/10.17226/18988.
Nzotungicimpaye, C.-M., MacIsaac, A. J., & Zickfeld, K. (2023). Delaying methane mitigation increases the risk of breaching the 2°C warming limit. Communications Earth & Environment, 4(1), Article 250. https://doi.org/10.1038/s43247-023-00898-z
Ocko, I. (2023, October 18). Hydrogen deployment implications for atmospheric methane. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Ocko, I. B., & Hamburg, S. P. (2022). Climate consequences of hydrogen emissions. Atmospheric Chemistry and Physics, 22(14), 9349–9368. https://doi.org/10.5194/acp-22-9349-2022.
Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M., Hristov, A. N., Pacala, S. W., Mauzerall, D. L., Xu, Y., & Hamburg, S. P. (2021). Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research Letters, 16(5), Article 054042. https://doi.org/10.1088/1748-9326/abf9c8.
O’Connor, F. M., Johnson, B. T., Jamil, O., Andrews, T., Mulcahy, J. P., & Manners, J. (2022). Apportionment of the pre-industrial to present-day climate forcing by methane using UKESM1: The role of the cloud radiative effect. Journal of Advances in Modeling Earth Systems, 14(10), Article e2022MS002991. https://doi.org/10.1029/2022MS002991.
OECD (Organisation for Economic Co-operation and Development). (2015). Stakeholder engagement in regulatory policy. In Regulatory policy in perspective: A reader’s companion to the OECD Regulatory Policy Outlook 2015. OECD Publishing. https://doi.org/10.1787/9789264241800-6-en.
Oeste, F. D., de Richter, R., Ming, T., & Caillol, S. (2017). Climate engineering by mimicking natural dust climate control: The iron salt aerosol method. Earth System Dynamics, 8(1), 1–54. https://doi.org/10.5194/esd-8-1-2017.
Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C. Y., Onstott, T. C., Medvigy, D., Bruhwiler, L., Dlugokencky, E. J., Hugelius, G., D’Imperio, L., & Elberling, B. (2020). Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature Climate Change, 10(4), 317–321. https://doi.org/10.1038/s41558-020-0734-z.
Oh, Y., Zhuang, Q., Welp, L. R., Liu, L., Lan, X., Basu, S., Dlugokencky, E. J., Bruhwiler, L., Miller, J. B., Michel, S. E., Schwietzke, S., Tans, P., Ciais, P., & Chanton, J. P. (2022). Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Communications Earth & Environment, 3(1), Article 159. https://doi.org/10.1038/s43247-022-00488-5.
O’Hara, J. K., Xiarchos, I. M., & Weber, C. (Eds.). (2023). Credits in California’s offset and biofuel programs for anaerobic digesters. Choices, 38(3), 1–6. https://doi.org/10.22004/ag.econ.338530.
Oksanen, A.-A. (2023). Dimming the midnight sun? Implications of the Sámi Council’s intervention against the SCoPEx project. Frontiers in Climate, 5. https://www.frontiersin.org/articles/10.3389/fclim.2023.994193.
Olczak, M., Piebalgs, A., & Balcombe, P. (2023). A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth, 6(5), 519–535. https://doi.org/10.1016/j.oneear.2023.04.009.
Omara, M., Gautam, R., O’Brien, M. A., Himmelberger, A., Franco, A., Meisenhelder, K., Hauser, G., Lyon, D. R., Chulakadabba, A., Miller, C. C., Franklin, J., Wofsy, S. C., & Hamburg, S. P. (2023). Developing a spatially explicit global oil and gas infrastructure database for characterizing methane emission sources at high resolution. Earth System Science Data, 15(8), 3761–3790. https://doi.org/10.5194/essd-15-3761-2023.
OSD (Office of the Secretary of Defense) Manufacturing Technology Program. (2018). Manufacturing Readiness Level (MRL) deskbook. https://www.dodmrl.com/MRL_Deskbook_2018.pdf.
Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic systems. American Economic Review, 100(3), 641–672. https://doi.org/10.1257/aer.100.3.641.
Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39(6), 751–760. https://doi.org/10.1093/scipol/scs093.
Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305(5686), 968–972. https://doi.org/10.1126/science.1100103.
Pacyniak, G. (2023). State sequestration: Federal policy accelerates carbon storage, but leaves full climate, equity protections to states. San Diego Journal of Climate & Energy Law, 95. https://digital.sandiego.edu/jcel/vol14/iss0/4.
Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., Gatti, L. V., Marotta, H., Calazans, L. S. B., Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., & Gauci, V. (2017). Large emissions from floodplain trees close the Amazon methane budget. Nature, 552(7684), 230–234. https://doi.org/10.1038/nature24639.
Parazoo, N. C., Koven, C. D., Lawrence, D. M., Romanovsky, V., & Miller, C. E. (2018). Detecting the permafrost carbon feedback: Talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere, 12(1), 123–144. https://doi.org/10.5194/tc-12-123-2018.
Park, S., & Kim, C. (2019). Application and development of methanotrophs in environmental engineering. Journal of Material Cycles and Waste Management, 21(3), 415–422. https://doi.org/10.1007/s10163-018-00826-w.
Parker, G. (2022, January 3). Carbon, capture, and storage: History, current state, and obstacles for the future (Part 2). Vibrant Environment Blog. https://www.eli.org/vibrant-environment-blog/carbon-capture-and-storage-history-current-state-and-obstacles-future-part-2.
Parson, E. A., Buck, H. J., Jinnah, S., Moreno-Cruz, J., & Nicholson, S. (2024). Toward an evidence-informed, responsible, and inclusive debate on solar geoengineering: A response to the proposed non-use agreement. WIREs Climate Change, e903. https://doi.org/10.1002/wcc.903.
Paulot, F., Paynter, D., Naik, V., Malyshev, S., Menzel, R., & Horowitz, L. W. (2021). Global modeling of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing. International Journal of Hydrogen Energy, 46(24), 13446–13460. https://doi.org/10.1016/j.ijhydene.2021.01.088.
Payton, B. (2024, March 5). High-integrity offsets key to restoring confidence in voluntary carbon market. Ethical Corporation Magazine. https://www.reuters.com/sustainability/sustainable-finance-reporting/high-integrity-offsets-key-restoring-confidence-voluntary-carbon-market-2024-03-05/.
PCAST (President’s Council of Advisors on Science and Technology). (2024). Accelerating effective reduction of greenhouse gas emissions. Executive Office of the President—President’s Council of Advisors on Science and Technology. https://www.whitehouse.gov/wp-content/uploads/2024/02/PCAST_Greenhouse-Gas-Report_Feb2024.pdf.
Peng, S., Lin, X., Thompson, R. L., Xi, Y., Liu, G., Hauglustaine, D., Lan, X., Poulter, B., Ramonet, M., Saunois, M., Yin, Y., Zhang, Z., Zheng, B., & Ciais, P. (2022). Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature, 612(7940), 477–482. https://doi.org/10.1038/s41586-022-05447-w.
Penn, E., Jacob, D. J., Chen, Z., East, J. D., Sulprizio, M. P., Bruhwiler, L., Maasakkers, J. D., Nesser, H., Qu, Z., Zhang, Y., & Worden, J. (2024). What can we learn about tropospheric OH from satellite observations of methane? EGUsphere, 1–37. https://doi.org/10.5194/egusphere-2024-2260.
Pennacchio, L., Mikkelsen, M. K., Krogsbøll, M., Van Herpen, M., & Johnson, M. S. (2024). Physical and practical constraints on atmospheric methane removal technologies. Environmental Research Letters, 19(10), Article 104058. https://doi.org/10.1088/1748-9326/ad7041.
Petrenko, V. V., Smith, A. M., Crosier, E. M., Kazemi, R., Place, P., Colton, A., Yang, B., Hua, Q., & Murray, L. T. (2021). An improved method for atmospheric 14CO measurements. Atmospheric Measurement Techniques, 14(3), 2055–2063. https://doi.org/10.5194/amt-14-2055-2021.
Petrenko, V. V., Smith, A. M., Schaefer, H., Riedel, K., Brook, E., Baggenstos, D., Harth, C., Hua, Q., Buizert, C., Schilt, A., Fain, X., Mitchell, L., Bauska, T., Orsi, A., Weiss, R. F., & Severinghaus, J. P. (2017). Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature, 548(7668), 443–446. https://doi.org/10.1038/nature23316.
Pett-Ridge, J., Kuebbing, S., Mayer, A. C., Hovorka, S., Pilorgé, H., Baker, S. E., Pang, S. H., Scown, C. D., Mayfield, K. K., Wong, A. A., Aines, R. D., Ammar, H. Z., Aui, A., Ashton, M., Basso, B., Bradford, M., Bump, A. P., Busch, I., Calzado, E. R., … Zhang, Y. (2023). Roads to removal: Options for carbon dioxide removal in the United States (LLNL-TR-852901). Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States). https://doi.org/10.2172/2301853.
Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology, 43(11), 4098–4104. https://doi.org/10.1021/es802423e.
Pham, D. N., Mai, D. H. A., Nguyen, A. D., Chau, T. H. T., & Lee, E. Y. (2022). Development of an engineered methanotroph-based microbial platform for biocatalytic conversion of methane to phytohormone for sustainable agriculture. Chemical Engineering Journal, 429, Article 132522. https://doi.org/10.1016/j.cej.2021.132522.
PHMSA (United States Pipeline and Hazardous Materials Safety Administration) & DOT (U.S. Department of Transportation). (2023). Pipeline safety: Gas pipeline leak detection and repair [Proposed Rule]. https://www.federalregister.gov/documents/2023/05/18/2023-09918/pipeline-safety-gas-pipeline-leak-detection-and-repair.
Pidgeon, N., Demski, C., Butler, C., Parkhill, K., & Spence, A. (2014). Creating a national citizen engagement process for energy policy. Proceedings of the National Academy of Sciences, 111(supplement_4), 13606–13613. https://doi.org/10.1073/pnas.1317512111.
Pierrehumbert, R. T. (2014). Short-lived climate pollution. Annual Review of Earth and Planetary Sciences, 42(1), 341–379. https://doi.org/10.1146/annurev-earth-060313-054843.
Pimm, A. J., Cockerill, T. T., & Gale, W. F. (2023). Reducing industrial hydrogen demand through preheating with very high temperature heat pumps. Applied Energy, 347, Article 121464. https://doi.org/10.1016/j.apenergy.2023.121464.
Platt, U., Allan, W., & Lowe, D. (2004). Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane. Atmospheric Chemistry and Physics, 4(9/10), 2393–2399. https://doi.org/10.5194/acp-4-2393-2004.
Portmann, R. W., Daniel, J. S., & Ravishankara, A. R. (2012). Stratospheric ozone depletion due to nitrous oxide: Influences of other gases. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1593), 1256–1264. https://doi.org/10.1098/rstb.2011.0377.
Poulter, B. (2023, April 20). The global methane budget: Emerging climate feedbacks. Atmospheric Methane Removal: Development of a Research Agenda, Meeting 1, Washington, D.C.
Prather, M. J. (1994). Lifetimes and eigenstates in atmospheric chemistry. Geophysical Research Letters, 21(9), 801–804. https://doi.org/10.1029/94GL00840.
Prather, M. J. (2007). Lifetimes and time scales in atmospheric chemistry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856), 1705–1726. https://doi.org/10.1098/rsta.2007.2040.
Prather, M. J., Holmes, C. D., & Hsu, J. (2012). Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012GL051440.
Prather, M. J., & Zhu, L. (2024). Resetting tropospheric OH and CH4 lifetime with ultraviolet H2O absorption. Science, 385(6705), 201–204. https://doi.org/10.1126/science.adn0415.
Putkinen, A., Siljanen, H. M. P., Laihonen, A., Paasisalo, I., Porkka, K., Tiirola, M., Haikarainen, I., Tenhovirta, S., & Pihlatie, M. (2021). New insight to the role of microbes in the methane exchange in trees: Evidence from metagenomic sequencing. New Phytologist, 231(2), 524–536. https://doi.org/10.1111/nph.17365.
Qu, Z., Jacob, D. J., Zhang, Y., Shen, L., Varon, D. J., Lu, X., Scarpelli, T., Bloom, A., Worden, J., & Parker, R. J. (2022). Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environmental Research Letters, 17(9), Article 094003. https://doi.org/10.1088/1748-9326/ac8754.
Rafalska, A., Walkiewicz, A., Osborne, B., Klumpp, K., & Bieganowski, A. (2023). Variation in methane uptake by grassland soils in the context of climate change–A review of effects and mechanisms. Science of the Total Environment, 871, Article 162127. https://doi.org/10.1016/j.scitotenv.2023.162127.
Raimi, K. T. (2021). Public perceptions of geoengineering. Current Opinion in Psychology, 42, 66–70. https://doi.org/10.1016/j.copsyc.2021.03.012.
Raimi, K. T., Maki, A., Dana, D., & Vandenbergh, M. P. (2019). Framing of geoengineering affects support for climate change mitigation. Environmental Communication, 13(3), 300–319. https://doi.org/10.1080/17524032.2019.1575258.
Randall, R., Jackson, R. B., & Majumdar, A. (2024). Cost modeling of photocatalytic decomposition of atmospheric methane and nitrous oxide. Environmental Research Letters, 19(6), Article 064015. https://doi.org/10.1088/1748-9326/ad4376.
Rayner, S., Heyward, C., Kruger, T., Pidgeon, N., Redgwell, C., & Savulescu, J. (2013). The Oxford Principles. Climatic Change, 121(3), 499–512. https://doi.org/10.1007/s10584-012-0675-2.
Reisinger, A. (2024). Why addressing methane emissions is a non-negotiable part of effective climate policy. Frontiers in Science, 2. https://doi.org/10.3389/fsci.2024.1451011.
Reisinger, A., & Geden, O. (2023). Temporary overshoot: Origins, prospects, and a long path ahead. One Earth, 6(12), 1631–1637. https://doi.org/10.1016/j.oneear.2023.11.008.
Research and Markets. (2024). Global hydrogen peroxide market analysis: Plant capacity, production, operating efficiency, technology, demand & supply, end user industries, distribution channel, regional demand, 2015–2030. https://www.researchandmarkets.com/reports/5174562/global-hydrogen-peroxide-market-analysis-plant.
Reynolds, J. L. (2015). A critical examination of the climate engineering moral hazard and risk compensation concern. The Anthropocene Review, 2, 174–191. https://doi.org/10.2139/ssrn.2492708.
Reynolds, J. L. (2019). Solar geoengineering to reduce climate change: A review of governance proposals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2229). https://doi.org/10.1098/rspa.2019.0255.
Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T., Jiang, K., Kriegler, E., Matthews, R., Peters, G. P., Rao, A., Robertson, S., Sebbit, A. M., Steinberger, J., Tavoni, M., & Van Vuuren, D. P. (2023). Mitigation pathways compatible with long-term goals. In Intergovernmental Panel on Climate Change (IPCC) (Ed.), Climate change 2022—Mitigation of climate change: Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 295–408). Cambridge University Press. https://doi.org/10.1017/9781009157926.005.
Ricks, W., Xu, Q., & Jenkins, J. D. (2023). Minimizing emissions from grid-based hydrogen production in the United States. Environmental Research Letters, 18(1), Article 014025. https://doi.org/10.1088/1748-9326/acacb5.
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., McCulloch, A., & Park, S. (2017). Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences, 114(21), 5373–5377. https://doi.org/10.1073/pnas.1616426114.
Rinzler, C. (2023, October 18). Commercializing methane removal. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Ripple, W. J., Wolf, C., Newsome, T. M., Gregg, J. W., Lenton, T. M., Palomo, I., Eikelboom, J. A. J., Law, B. E., Huq, S., Duffy, P. B., & Rockström, J. (2021). World scientists’ warning of a climate emergency 2021. BioScience, 71(9), 894–898. https://doi.org/10.1093/biosci/biab079.
Röckmann, T., Herpen, M. van, Brashear, C., Veen, C. van der, Gromov, S., Li, Q., Saiz-Lopez, A., Meidan, D., Barreto, A., Prats, N., Mármol, I., Ramos, R., Baños, I., Arrieta, J. M., Zaehnle, S., Jordan, A., Moossen, H., Timas, H., Young, D., … Johnson, M. S. (2024). The use of δ13C in CO to determine removal of CH4 by Cl radicals in the atmosphere. Environmental Research Letters, 19(6), Article 064054. https://doi.org/10.1088/1748-9326/ad4375.
Roberts, C., & Nemet, G. (2022). Systematic Historical Analogue Research for Decision-making (SHARD): Introducing a new methodology for using historical case studies to inform low-carbon transitions. Energy Research & Social Science, 93, Article 102768. https://doi.org/10.1016/j.erss.2022.102768.
Rogelj, J., & Lamboll, R. D. (2024). Substantial reductions in non-CO2 greenhouse gas emissions reductions implied by IPCC estimates of the remaining carbon budget. Communications Earth & Environment, 5(1), Article 35. https://doi.org/10.1038/s43247-023-01168-8.
Rokeach, M. (1973). The nature of human values. Free Press.
Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov, A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva, N. G., Abramov, A. A., Gilichinsky, D. A., & Vasiliev, A. A. (2010). Thermal state of permafrost in Russia. Permafrost and Periglacial Processes, 21(2), 136–155. https://doi.org/10.1002/ppp.683.
Roque, B. M., Venegas, M., Kinley, R. D., de Nys, R., Duarte, T. L., Yang, X., & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE, 16(3), Article e0247820. https://doi.org/10.1371/journal.pone.0247820.
Rosace, M. C., Veronesi, F., Briggs, S., Cardenas, L. M., & Jeffery, S. (2020). Legacy effects override soil properties for CO2 and N2O but not CH4 emissions following digestate application to soil. GCB Bioenergy, 12(6), 445–457. https://doi.org/10.1111/gcbb.12688.
Rose, S. K., Richels, R., Blanford, G., & Rutherford, T. (2017). The Paris Agreement and next steps in limiting global warming. Climatic Change, 142(1), 255–270. https://doi.org/10.1007/s10584-017-1935-y.
Rubin, R., Oldfield, E., Lavallee, J., Griffin, T., Mayers, B., & Sanderman, J. (2023). Climate mitigation through soil amendments: Quantification, evidence, and uncertainty. Carbon Management, 14(1). https://doi.org/10.1080/17583004.2023.2217785.
Ruppel, C. D. (2011). Methane hydrates and contemporary climate change. Nature Education Knowledge, 3(10).
Samset, B. H., Zhou, C., Fuglestvedt, J. S., Lund, M. T., Marotzke, J., & Zelinka, M. D. (2023). Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Communications Earth & Environment, 4(1), 1–6. https://doi.org/10.1038/s43247023-01061-4.
Sanderson, B. M., O’Neill, B. C., & Tebaldi, C. (2016). What would it take to achieve the Paris temperature targets? Geophysical Research Letters, 43(13), 7133–7142. https://doi.org/10.1002/2016GL069563.
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct capture of CO2 from ambient air. Chemical Reviews, 116(19), 11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., … Zhu, Q. (2016). The global methane budget 2000–2012. Earth System Science Data, 8(2), 697–751. https://doi.org/10.5194/essd-8-697-2016.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., … Zhu, Q. (2017). Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 17(18), 11135–11161. https://doi.org/10.5194/acp-17-11135-2017.
Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., … Zhuang, Q. (2024). Global methane budget 2000–2020. https://doi.org/10.5194/essd-2024-115.
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., … Zhuang, Q. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561–1623. https://doi.org/10.5194/essd-12-1561-2020.
Sawakuchi, H. O., Martin, G., Peura, S., Bertilsson, S., Karlsson, J., & Bastviken, D. (2021). Phosphorus regulation of methane oxidation in water from ice-covered lakes. Journal of Geophysical Research: Biogeosciences, 126(9), Article e2020JG006190. https://doi.org/10.1029/2020JG006190.
Sawyer, W., & Plata, D. (2023). DAC beyond carbon dioxide: A perspective on the technical feasibility and needed developments for engineered methane oxidation at 2 ppm. American Geophysical Union Fall Meeting, San Francisco, CA.
Schäfer, S., Lawrence, M., Stelzer, H., Born, W., & Low, S. (2015). The European Transdisciplinary Assessment of Climate Engineering (EuTRACE): Removing greenhouse gases from the atmosphere and reflecting sunlight away from Earth (Funded by the European Union’s Seventh Framework Programme under Grant Agreement 306993). https://pure.mpg.de/rest/items/item_2478948/component/file_2478947/content.
Schmid, D. V. (2023). Are forest carbon projects in Africa green but mean? A mixed-method analysis. Climate and Development, 15(1), 45–59. https://doi.org/10.1080/17565529.2022.2054400.
Schmider, T., Hestnes, A. G., Brzykcy, J., Schmidt, H., Schintlmeister, A., Roller, B. R. K., Teran, E. J., Söllinger, A., Schmidt, O., Polz, M. F., Richter, A., Svenning, M. M., & Tveit, A. T. (2024). Physiological basis for atmospheric methane oxidation and methanotrophic growth on air. Nature Communications, 15(1), Article 4151. https://doi.org/10.1038/s41467-024-48197-1.
Schmidt, G. (2024, April 4). Much ado about acceleration. RealClimate: Climate Science from Climate Scientists. https://www.realclimate.org/index.php/archives/2024/04/much-ado-about-acceleration/.
Schneider Von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, S., Meinshausen, M., & Boike, J. (2015). Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11), 3469–3488. https://doi.org/10.5194/bg-12-3469-2015.
Schoenegger, P., & Mintz-Woo, K. (2024). Moral hazards and solar radiation management: Evidence from a large-scale online experiment. Journal of Environmental Psychology, 95, Article 102288. https://doi.org/10.1016/j.jenvp.2024.102288.
Schultz, W. P., & Zelezny, L. (1999). Values as predictors of environmental attitudes: Evidence for consistency across 14 countries. Journal of Environmental Psychology, 19(3), 255–265. https://doi.org/10.1006/jevp.1999.0129.
Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In Advances in Experimental Social Psychology (Vol. 25, pp. 1–65). Elsevier. https://doi.org/10.1016/S0065-2601(08)60281-6.
Scott-Buechler, C., Cain, B., Osman, K., Ardoin, N. M., Fraser, C., Adcox, G., Polk, E., & Jackson, R. B. (2024). Communities conditionally support deployment of direct air capture for carbon dioxide removal in the United States. Communications Earth & Environment, 5(1), 1–13. https://doi.org/10.1038/s43247-024-01334-6.
Semrau, J. D., DiSpirito, A. A., Gu, W., & Yoon, S. (2018). Metals and methanotrophy. Applied and Environmental Microbiology, 84(6), Article e02289-17. https://doi.org/10.1128/AEM.02289-17.
Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., & Shelby, J. (2018). The National Solar Radiation Data Base (NSRDB). Renewable and Sustainable Energy Reviews, 89, 51–60. https://doi.org/10.1016/j.rser.2018.03.003.
Sharp, B. E., & Miller, S. A. (2016). Potential for integrating diffusion of innovation principles into life cycle assessment of emerging technologies. Environmental Science & Technology, 50(6), 2771–2781. https://doi.org/10.1021/acs.est.5b03239.
Shaw, J. T., Allen, G., Barker, P., Pitt, J. R., Pasternak, D., Bauguitte, S. J. -B., Lee, J., Bower, K. N., Daly, M. C., Lunt, M. F., Ganesan, A. L., Vaughan, A. R., Chibesakunda, F., Lambakasa, M., Fisher, R. E., France, J. L., Lowry, D., Palmer, P. I., Metzger, S., … Nisbet, E. G. (2022). Large methane emission fluxes observed from tropical wetlands in Zambia. Global Biogeochemical Cycles, 36(6), Article e2021GB007261. https://doi.org/10.1029/2021GB007261.
Shayegan, Z., Lee, C.-S., & Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review. Chemical Engineering Journal, 334, 2408–2439. https://doi.org/10.1016/j.cej.2017.09.153.
Shindell, D., Sadavarte, P., Aben, I., Bredariol, T. D. O., Dreyfus, G., Höglund-Isaksson, L., Poulter, B., Saunois, M., Schmidt, G. A., Szopa, S., Rentz, K., Parsons, L., Qu, Z., Faluvegi, G., & Maasakkers, J. D. (2024). The methane imperative. Frontiers in Science, 2, Article 1349770. https://doi.org/10.3389/fsci.2024.1349770.
Silverman-Roati, K., & Webb, R. M. (2024). Legal considerations for atmospheric methane removal. Paper Commissioned by the Committee on Atmospheric Methane Removal: Development of a Research Agenda. http://nap.nationalacademies.org/catalog/27157.
Silverman-Roati, K., Webb, R., & Gerrard, M. (2022a). Permitting seaweed cultivation for carbon sequestration in California: Barriers and recommendations. Sabin Center for Climate Change Law. https://scholarship.law.columbia.edu/faculty_scholarship/3523.
Silverman-Roati, K., Webb, R., & Gerrard, M. (2022b). Removing carbon dioxide through ocean fertilization: Legal challenges and opportunities. Sabin Center for Climate Change Law. https://scholarship.law.columbia.edu/faculty_scholarship/3637.
Singh, J. S., & Gupta, V. K. (2016). Degraded land restoration in reinstating CH4 sink. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00923.
Singh, J. S., & Singh, D. P. (2012). Reforestation: A potential approach to mitigate excess atmospheric CH4 build-up. Ecological Management & Restoration, 13(3), 245–248. https://doi.org/10.1111/emr.12004.
Singh, U., Algren, M., Schoeneberger, C., Lavallais, C., O’Connell, M. G., Oke, D., Liang, C., Das, S., Salas, S. D., & Dunn, J. B. (2022). Technological avenues and market mechanisms to accelerate methane and nitrous oxide emissions reductions. iScience, 25(12), Article 105661. https://doi.org/10.1016/j.isci.2022.105661.
Sirigina, D. S. S. S., Goel, A., & Nazir, S. M. (2023). Process concepts and analysis for co-removing methane and carbon dioxide from the atmosphere. Scientific Reports, 13(1), Article 17290. https://doi.org/10.1038/s41598-023-44582-w.
Skeie, R. B., Hodnebrog, Ø., & Myhre, G. (2023). Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions. Communications Earth & Environment, 4(1), Article 317. https://doi.org/10.1038/s43247-023-00969-1.
Slovic, P. (1987). Perception of risk. Science, 236(4799), 280–285. https://doi.org/10.1126/science.3563507.
Smith, C., & Mathison, C. (2024). How much methane removal is required to avoid overshooting 1.5°C? Environmental Research Letters, 19(7), Article 074044. https://doi.org/10.1088/1748-9326/ad5853.
Smith, K. A., & Conen, F. (2004). Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20(2), 255–263. https://doi.org/10.1111/j.1475-2743.2004.tb00366.x.
Smith, S., Geden, O., Gidden, M., Lamb, W. F., Nemet, G. F., Minx, J., Buck, H., Burke, J., Cox, E., & Edwards, M. (2024). The state of carbon dioxide removal—2nd edition. https://doi.org/10.17605/OSF.IO/F85QJ.
Smith, S., Geden, O., Nemet, G., Gidden, M., Lamb, W., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lueck, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., … Minx, J. (2023). State of carbon dioxide removal—1st edition. https://doi.org/10.17605/OSF.IO/W3B4Z.
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., & Romanovsky, V. E. (2022). The changing thermal state of permafrost. Nature Reviews Earth & Environment, 3(1), 10–23. https://doi.org/10.1038/s43017-021-00240-1.
Smith, Z. (2023, October 18). Smith Lab research: Molecular and ionic separations. Atmospheric Methane Removal Needs, Challenges, and Opportunities—A Workshop, Washington, D.C.
Snow, D. A., Rochford, E. B., Worden, S. K., & Benford, R. D. (1986). Frame alignment processes, micromobilization, and movement participation. American Sociological Review, 51(4), 464–481. https://doi.org/10.2307/2095581.
Souri, A. H., Duncan, B. N., Strode, S. A., Anderson, D. C., Manyin, M. E., Liu, J., Oman, L. D., Zhang, Z., & Weir, B. (2024). Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: A synergistic integration of model simulations and satellite observations. Atmospheric Chemistry and Physics, 24(15), 8677–8701. https://doi.org/10.5194/acp-24-8677-2024.
Sovacool, B. K. (2023). Expanding carbon removal to the Global South: Thematic concerns on systems, justice, and climate governance. Energy and Climate Change, 4, Article 100103. https://doi.org/10.1016/j.egycc.2023.100103.
Spark Climate Solutions. (2024). First Round of Exploratory Grants for Atmospheric Methane Research. Delivered to the Committee on Atmospheric Methane Removal: Development of a Research Agenda, April 12, 2024.
Stapp, J., Nolte, C., Potts, M., Baumann, M., Haya, B. K., & Butsic, V. (2023). Little evidence of management change in California’s forest offset program. Communications Earth & Environment, 4(1), Article 331. https://doi.org/10.1038/s43247-023-00984-2.
Stein, L., & Lidstrom, M. (2024). Greenhouse gas mitigation requires caution. Science, 384(6700), 1068–1069. https://doi.org/10.1126/science.adi0503.
Stern, P. C., Dietz, T., Abel, T., Guagnano, G. A., & Kalof, L. (1999). A value-belief-norm theory of support for social movements: The case of environmentalism. Human Ecology Review, 6(2), 81–97.
Stern, P. C., Kalof, L., Dietz, T., & Guagnano, G. A. (1995). Values, beliefs, and proenvironmental action: Attitude formation toward emergent attitude Objects. Journal of Applied Social Psychology, 25(18), 1611–1636. https://doi.org/10.1111/j.1559-1816.1995.tb02636.x.
Stevenson, D. S., Zhao, A., Naik, V., O’Connor, F. M., Tilmes, S., Zeng, G., Murray, L. T., Collins, W. J., Griffiths, P. T., Shim, S., Horowitz, L. W., Sentman, L. T., & Emmons, L. (2020). Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics, 20(21), 12905–12920. https://doi.org/10.5194/acp-20-12905-2020.
Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580. https://doi.org/10.1016/j.respol.2013.05.008.
Stolaroff, J. K., Bhattacharyya, S., Smith, C. A., Bourcier, W. L., Cameron-Smith, P. J., & Aines, R. D. (2012). Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environmental Science & Technology, 46(12), 6455–6469. https://doi.org/10.1021/es204686w.
Stolz, P., Frischknecht, R., Wambach, K., Sinha, P., & Heath, G. (2018). Life cycle assessment ofcurrent photovoltaic module recycling: IEA PVPS task 12: PV sustainability. https://research-hub.nrel.gov/en/publications/life-cycle-assessment-of-current-photovoltaic-module-recycling-ie.
Strode, S. A., Wang, J. S., Manyin, M., Duncan, B., Hossaini, R., Keller, C. A., Michel, S. E., & White, J. W. C. (2020). Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine. Atmospheric Chemistry and Physics, 20(14), 8405–8419. https://doi.org/10.5194/acp-20-8405-2020.
Suarez, V. (2023, April 20). Equity, justice, and carbon dioxide removal (CDR). Atmospheric Methane Removal: Development of a Research Agenda, Meeting 1, Washington D.C.
Suboticki, I., Heidenreich, S., Ryghaug, M., & Skjølsvold, T. M. (2023). Fostering justice through engagement: A literature review of public engagement in energy transitions. Energy Research & Social Science, 99, Article 103053. https://doi.org/10.1016/j.erss.2023.103053.
Sugiyama, M., Asayama, S., & Kosugi, T. (2020). The North–South divide on public perceptions of stratospheric aerosol geoengineering? A survey in six Asia-Pacific countries. Environmental Communication, 14(5), 641–656. https://doi.org/10.1080/17524032.2019.1699137.
Sullins, D., Bogaerts, M., Verheijen, B. H. F., Naugle, D. E., Griffiths, T., & Hagen, C. A. (2021). Increasing durability of voluntary conservation through strategic implementation of the Conservation Reserve Program. Biological Conservation, 259, Article 109177. https://doi.org/10.1016/j.biocon.2021.109177.
Sullivan, T. D., Parsekian, A. D., Sharp, J., Hanke, P. J., Thalasso, F., Shapley, M., Engram, M., & Walter Anthony, K. (2021). Influence of permafrost thaw on an extreme geologic methane seep. Permafrost and Periglacial Processes, 32(3), 484–502. https://doi.org/10.1002/ppp.2114.
Sun, T., Shrestha, E., Hamburg, S. P., Kupers, R., & Ocko, I. B. (2024). Climate impacts of hydrogen and methane emissions can considerably reduce the climate benefits across key hydrogen use cases and time scales. Environmental Science & Technology, 58(12), 5299–5309. https://doi.org/10.1021/acs.est.3c09030.
Sun, X., Ferris, R., & Fajardo, V. (2024). China’s ongoing efforts to address methane emissions and opportunities to further raise China’s methane mitigation ambition. Institute for Governance & Sustainable Development (IGSD) and the Asia-Pacific Centre for Environmental Law (APCEL). https://law.nus.edu.sg/apcel/wp-content/uploads/sites/3/2024/03/China-Methane-Briefing-APCEL-Mar-2024.pdf.
Sundqvist, E., Crill, P., Mölder, M., Vestin, P., & Lindroth, A. (2012). Atmospheric methane removal by boreal plants. Geophysical Research Letters, 39(21). https://doi.org/10.1029/2012GL053592.
Sundstrom, S. M., Angeler, D. G., Ernakovich, J. G., García, J. H., Hamm, J. A., Huntington, O., & Allen, C. R. (2023). The emergence of convergence. Elementa: Science of the Anthropocene, 11(1), Article 00128. https://doi.org/10.1525/elementa.2022.00128.
Swolkień, J., Fix, A., & Gałkowski, M. (2022). Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: A case study from the CoMet mission. Atmospheric Chemistry and Physics, 22(24), 16031–16052. https://doi.org/10.5194/acp-22-16031-2022.
Syed, R., Saggar, S., Tate, K., Rehm, B. H. A., & Berben, P. (2017). Assessing the performance of floating biofilters for oxidation of methane from dairy effluent ponds. Journal of Environmental Quality, 46(2), 272–280. https://doi.org/10.2134/jeq2016.08.0310.
Taelman, S. E., Schaubroeck, T., De Meester, S., Boone, L., & Dewulf, J. (2016). Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems. Science of the Total Environment, 550, 143–156. https://doi.org/10.1016/j.scitotenv.2016.01.055.
Tan, C., Kalhoro, M. T., Faqir, Y., Ma, J., Osei, M. D., & Khaliq, G. (2022). Climate-resilient microbial biotechnology: A perspective on sustainable agriculture. Sustainability, 14(9), Article 5574. https://doi.org/10.3390/su14095574.
Tang, X., Rosseler, O., Chen, S., Houzé de l’Aulnoit, S., Lussier, M. J., Zhang, J., Ban-Weiss, G., Gilbert, H., Levinson, R., & Destaillats, H. (2021). Self-cleaning and de-pollution efficacies of photocatalytic architectural membranes. Applied Catalysis B: Environmental, 281, Article 119260. https://doi.org/10.1016/j.apcatb.2020.119260.
Tao, T., Wang, Y., Ming, T., Mu, L., de Richter, R., & Li, W. (2023). Downdraft energy tower for negative emissions: Analysis on methane removal and other co-benefits. Greenhouse Gases: Science and Technology, 13(5), 713–720. https://doi.org/10.1002/ghg.2233.
Temple, J. (2023, December 12). Two former Department of Energy staffers warn we’re doing carbon removal all wrong. MIT Technology Review. https://www.technologyreview.com/2023/12/12/1085178/two-former-department-of-energy-staffers-warn-were-doing-carbon-removal-all-wrong/.
The Copernicus Programme. (2024). Copernicus: February 2024 was globally the warmest on record–Global sea surface temperatures at record high. https://climate.copernicus.eu/copernicus-february-2024-was-globally-warmest-record-global-sea-surface-temperatures-record-high.
The Royal Society: Royal Academy of Engineering. (2018). Greenhouse gas removal. https://royalsociety.org/-/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf.
The United States’ Nationally Determined Contribution. (2021, April). Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. https://unfccc.int/sites/default/files/NDC/2022-06/United%20States%20NDC%20April%2021%202021%20Final.pdf.
The White House. (2021a). The long-term strategy of the United States: Pathways to net-zero greenhouse gas emissions by 2050. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf.
The White House. (2021b). U.S. Methane Emissions Reduction Action Plan: Critical and commonsense steps to cut pollution and consumer costs, while boosting good-paying jobs and American competitiveness. https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf.
The White House. (2023a). Accelerating progress: Delivering on the U.S. methane action plan. https://www.whitehouse.gov/wp-content/uploads/2023/12/Methane-Action-Plan-2023-Topper.pdf.
The White House. (2023b). National strategy to advance an integrated U.S. greenhouse gas measurement, monitoring, and information system. https://www.whitehouse.gov/wp-content/uploads/2023/11/NationalGHGMMISStrategy-2023.pdf.
The White House. (2024a, July 23). Fact sheet: Biden-Harris Administration announces new actions to detect and reduce climate super pollutants [Press release]. https://www.whitehouse.gov/briefing-room/statements-releases/2024/07/23/fact-sheet-biden-harris-administration-announces-new-actions-to-detect-and-reduce-climate-super-pollutants/.
The White House. (2024b). Voluntary carbon markets joint policy statement and principles. https://www.whitehouse.gov/wp-content/uploads/2024/05/VCM-Joint-Policy-Statement-and-Principles.pdf.
Theobald, D. M., Kennedy, C., Chen, B., Oakleaf, J., Baruch-Mordo, S., & Kiesecker, J. (2020). Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth System Science Data, 12(3), 1953–1972. https://doi.org/10.5194/essd-12-1953-2020.
Thompson, M. S., Cheville, A., Thomas, R., Applehans, S., Thomas, S. J., Nickel, R., & Asare, P. (2023). What is convergence? A systematic review of the definition of and aspects of convergent work. 2023 IEEE Frontiers in Education Conference (FIE). 2023 IEEE Frontiers in Education Conference (FIE), College Station, TX, USA. https://doi.org/10.1109/FIE58773.2023.10343511.
Thorpe, A. K., Green, R. O., Thompson, D. R., Brodrick, P. G., Chapman, J. W., Elder, C. D., Irakulis-Loitxate, I., Cusworth, D. H., Ayasse, A. K., Duren, R. M., Frankenberg, C., Guanter, L., Worden, J. R., Dennison, P. E., Roberts, D. A., Chadwick, K. D., Eastwood, M. L., Fahlen, J. E., & Miller, C. E. (2023). Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances, 9(46), 1–13. https://doi.org/10.1126/sciadv.adh2391.
Thorstensen, E., & Forsberg, E.-M. (2016). Social Life Cycle Assessment as a resource for Responsible Research and Innovation. Journal of Responsible Innovation, 3(1), 50–72. https://doi.org/10.1080/23299460.2016.1181295.
Tollefson, J. (2024, March 27). Divisive sun-dimming study at Harvard cancelled: What’s next? Nature. https://doi.org/10.1038/d41586-024-00876-1.
Tong, L. G., Zhang, P., Yin, S. W., Zhang, P. K., Liu, C. P., Li, N., & Wang, L. (2018). Waste heat recovery method for the air pre-purification system of an air separation unit. Applied Thermal Engineering, 143, 123–129. https://doi.org/10.1016/j.applthermaleng.2018.07.072.
Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R., Blake, D. R., Brune, W. H., Chen, X., Commane, R., Crounse, J. D., Daube, B. C., Diskin, G. S., Elkins, J. W., Evans, M. J., Hall, S. R., Hintsa, E. J., Hornbrook, R. S., Kasibhatla, P. S., Kim, M. J., … Yu, F. (2020). Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 20(13), 7753–7781. https://doi.org/10.5194/acp-20-7753-2020.
Treat, C. C., Bloom, A. A., & Marushchak, M. E. (2018). Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems. Global Change Biology, 24(8), 3331–3343. https://doi.org/10.1111/gcb.14137.
Truelove, H. B., Carrico, A. R., Weber, E. U., Raimi, K. T., & Vandenbergh, M. P. (2014). Positive and negative spillover of pro-environmental behavior: An integrative review and theoretical framework. Global Environmental Change, 29, 127–138. https://doi.org/10.1016/j.gloenvcha.2014.09.004.
Tsopelakou, A. M., Stallard, J., Archibald, A., Fitzgerald, S., & Boies, A. (2024). Exploring the bounds of methane catalysis in the context of atmospheric methane removal. Environmental Research Letters, 19(5), Article 054020. https://doi.org/10.1088/1748-9326/ad383f.
Tsoy, N., Steubing, B., Van Der Giesen, C., & Guinée, J. (2020). Upscaling methods used in ex ante life cycle assessment of emerging technologies: A review. The International Journal of Life Cycle Assessment, 25(9), 1680–1692. https://doi.org/10.1007/s11367-020-01796-8.
Turner, A. J., Frankenberg, C., & Kort, E. A. (2019). Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences, 116(8), 2805–2813. https://doi.org/10.1073/pnas.1814297116.
Turner, A. J., Frankenberg, C., Wennberg, P. O., & Jacob, D. J. (2017). Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proceedings of the National Academy of Sciences, 114(21), 5367–5372. https://doi.org/10.1073/pnas.1616020114.
Turner, A. J., Fung, I., Naik, V., Horowitz, L. W., & Cohen, R. C. (2018). Modulation of hydroxyl variability by ENSO in the absence of external forcing. Proceedings of the National Academy of Sciences, 115(36), 8931–8936. https://doi.org/10.1073/pnas.1807532115.
Tveit, A. T., Hestnes, A. G., Robinson, S. L., Schintlmeister, A., Dedysh, S. N., Jehmlich, N., Von Bergen, M., Herbold, C., Wagner, M., Richter, A., & Svenning, M. M. (2019). Widespread soil bacterium that oxidizes atmospheric methane. Proceedings of the National Academy of Sciences, 116(17), 8515–8524. https://doi.org/10.1073/pnas.1817812116.
Ulibarri, N. (2015). Collaboration in federal hydropower licensing: Impacts on process, outputs, and outcomes. Public Performance & Management Review, 38(4), 578–606. https://doi.org/10.1080/15309576.2015.1031004.
UNEP (United Nations Environment Programme). (2023, February 28). One atmosphere: An independent expert review on solar radiation modification research and deployment. https://www.unep.org/resources/report/Solar-Radiation-Modification-research-deployment.
UNEP & CACC. (2021). Global methane assessment: Benefits and costs of mitigating methane emissions. United Nations Environment Programme. http://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions.
UNEP & CCAC. (2022). Global methane assessment: 2030 baseline report. United Nations Environment Programme. http://www.unep.org/resources/report/global-methane-assessment-2030-baseline-report.
UNFCCC (United Nations Framework Convention on Climate Change). (2013). Afforestation and reforestation projects under the Clean Development Mechanism: A reference manual. United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/publications/cdm_afforestation_bro_web.pdf.
UNFCCC. (2023, December 2). Oil & Gas Decarbonization Charter launched to accelerate climate action [Press release]. https://www.cop28.com/en/news/2023/12/Oil-Gas-Decarbonization-Charter-launched-to--accelerate-climate-action.
USDA (U.S. Department of Agriculture). (2023a). USDA investment in improved GHG measurement, monitoring, reporting and verification for agriculture and forestry through the Inflation Reduction Act [Fact sheet]. https://www.nrcs.usda.gov/sites/default/files/2023-07/nrcs-ira-mmrv-factsheet-23.pdf.
USDA. (2023b). Report to Congress: A general assessment of the role of agriculture and forestry in U.S. carbon markets. U.S. Department of Agriculture. https://www.usda.gov/sites/default/files/documents/USDA-General-Assessment-of-the-Role-of-Agriculture-and-Forestry-in-US-Carbon-Markets.pdf.
U.S. Department of State. (2023a, December 4). Highlights from 2023 Global Methane Pledge Ministerial [Fact sheet]. https://www.state.gov/highlights-from-2023-global-methane-pledge-ministerial/.
U.S. Department of State. (2023b, December 4). Lowering Organic Waste Methane initiative (LOW-Methane) [Press release]. https://www.state.gov/lowering-organic-waste-methane-initiative-low-methane/#:~:text=The%20ambition%20of%20LOW%2DMethane,in%20public%20and%20private%20investment.
U.S. DoD (Department of Defense). (2010). Defense acquisition guidebook: August 5, 2010. https://dml.armywarcollege.edu/wp-content/uploads/2023/01/DAU-Guidebook-Full-Version-2010.pdf.
U.S. DOE (Department of Energy). (n.d.). Adoption readiness levels (ARL): A complement to TRL. Energy.Gov. Retrieved July 25, 2024, from https://www.energy.gov/technologytransitions/adoption-readiness-levels-arl-complement-trl.
U.S. DOE. (2022). Strategic vision: The role of fossil energy and carbon management in achieving net-zero greenhouse gas emissions. DOE Office of Fossil Energy and Carbon Management. https://www.energy.gov/sites/default/files/2022-04/2022-Strategic-Vision-The-Role-of-Fossil-Energy-and-Carbon-Management-in-Achieving-Net-Zero-Greenhouse-Gas-Emissions_Updated-4.28.22.pdf.
U.S. DOE. (2023a, March 13). DOE invests $47 million to reduce methane emissions from oil and gas sector [Press release]. https://www.energy.gov/articles/doe-invests-47-million-reduce-methane-emissions-oil-and-gas-sector.
U.S. DOE. (2023b). Assessing lifecycle greenhouse gas emissions associated with electricity use for the Section 45V Clean Hydrogen Production Tax Credit. https://www.energy.gov/sites/default/files/2023-12/Assessing_Lifecycle_Greenhouse_Gas_Emissions_Associated_with_Electricity_Use_for_the_Section_45V_Clean_Hydrogen_Production_Tax_Credit.pdf.
U.S. DOE. (2023c). Pathways to commercial liftoff: Clean hydrogen. https://liftoff.energy.gov/wp-content/uploads/2023/05/20230523-Pathways-to-Commercial-Liftoff-Clean-Hydrogen.pdf.
U.S. DOE. (2023d). U.S. national clean hydrogen strategy and roadmap. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/us-national-clean-hydrogen-strategy-roadmap.pdf.
U.S. DOE. (2024a, February 12). DOE announces up to $100 million for pilot-scale testing of advanced carbon dioxide removal technologies [Press release]. https://www.energy.gov/fecm/articles/doe-announces-100-million-pilot-scale-testing-advanced-carbon-dioxide-removal.
U.S. DOE. (2024b, June 4). NOAA, DOE sign agreement to advance marine carbon dioxide removal [Press release]. https://www.energy.gov/fecm/articles/noaa-doe-sign-agreement-advance-marine-carbon-dioxide-removal.
U.S. EPA (Environmental Protection Agency). (n.d.a). Accomplishments of the Landfill Methane Outreach Program. Retrieved September 8, 2024, from https://www.epa.gov/lmop/accomplishments-landfill-methane-outreach-program#annual.
U.S. EPA. (n.d.b). AgSTAR data and trends. Retrieved September 8, 2024, from https://www.epa.gov/agstar/agstar-data-and-trends.
U.S. EPA. (n.d.c). Coalbed Methane Outreach Program. Retrieved September 8, 2024, from https://www.epa.gov/cmop.
U.S. EPA. (n.d.d). GHGRP waste. Retrieved September 8, 2024, from https://www.epa.gov/ghgreporting/ghgrp-waste.
U.S. EPA. (2003). Assessment of the worldwide market potential for oxidizing coal mine ventilation air methane. U.S. Environmental Protection Agency, Coalbed Methane Outreach Program. https://nepis.epa.gov/Exe/ZyNET.exe/6000049W.txt?ZyActionD=ZyDocument&Client=EPA&Index=2000%20Thru%202005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C00THRU05%5CTXT%5C00000011%5C6000049W.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1.
U.S. EPA. (2015). Air pollution control technology fact sheet (EPA-CICA Fact Sheet EPA-452/F-03-021). https://web.archive.org/web/20150410230330/http:/www.epa.gov/ttnchie1/mkb/documents/fregen.pdf.
U.S. EPA. (2019). Ventilation air methane (VAM) utilization technologies (EPA-430-F-19-023). U.S. Environmental Protection Agency, Coalbed Methane Outreach Program. https://www.epa.gov/sites/default/files/2019-11/documents/vam_technologies.pdf.
U.S. EPA. (2020). Updating the Atmospheric and Health Effects Framework model: Stratospheric ozone protection and human health benefits. EPA Publication Number 430R20005. https://www.epa.gov/sites/default/files/2020-04/documents/2020_ahef_report.pdf.
U.S. EPA. (2021). Technical support document: Social cost of carbon, methane, and nitrous oxide interim estimates under Executive Order 13990. Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf.
U.S. EPA. (2023a). 40 CFR Parts 80 and 1090. Federal Register, 88(132), 44468–44593. https://www.govinfo.gov/content/pkg/FR-2023-07-12/pdf/2023-13462.pdf.
U.S. EPA. (2023b). Report on the social cost of greenhouse gases: Estimates incorporating recent scientific advances (Docket ID No. EPA-HQ-OAR-2021-0317). U.S. Environmental Protection Agency, National Center for Environmental Economics Office of Policy, Climate Change Division, Office of Air and Radiation. https://www.epa.gov/system/files/documents/2023-12/epa_scghg_2023_report_final.pdf.
U.S. EPA. (2024a). An overview of renewable natural gas from biogas (EPA 456-R-24-001). https://www.epa.gov/system/files/documents/2024-01/lmop_rng_document.pdf.
U.S. EPA. (2024b). Inventory of U.S. greenhouse gas emissions and sinks: 1990–2022 (EPA 430R-24004). U.S. Environmental Protection Agency. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022.
U.S. EPA. (2024c). Standards of performance for new, reconstructed, and modified sources and emissions guidelines for existing sources: Oil and natural gas sector climate review: Correction (Interim Final Rule 2024–13206; pp. 62872–74847). https://www.federalregister.gov/documents/2024/08/01/2024-13206/standards-of-performance-for-new-reconstructed-and-modified-sources-and-emissions-guidelines-for.
van den Bergh, J., & Botzen, W. (2020). Low-carbon transition is improbable without carbon pricing. Proceedings of the National Academy of Sciences, 117(38), 23219–23220. https://doi.org/10.1073/pnas.2010380117.
van Herpen, M. M. J. W., Li, Q., Saiz-Lopez, A., Liisberg, J. B., Röckmann, T., Cuevas, C. A., Fernandez, R. P., Mak, J. E., Mahowald, N. M., Hess, P., Meidan, D., Stuut, J.-B. W., & Johnson, M. S. (2023). Photocatalytic chlorine atom production on mineral dust–sea spray aerosols over the North Atlantic. Proceedings of the National Academy of Sciences, 120(31), Article e2303974120. https://doi.org/10.1073/pnas.2303974120.
van Soest, H. L., de Boer, H. S., Roelfsema, M., den Elzen, M. G. J., Admiraal, A., van Vuuren, D. P., Hof, A. F., van den Berg, M., Harmsen, M. J. H. M., Gernaat, D. E. H. J., & Forsell, N. (2017). Early action on Paris Agreement allows for more time to change energy systems. Climatic Change, 144(2), 165–179. https://doi.org/10.1007/s10584-017-2027-8.
Vanclay, F., Esteves, A., Aucamp, I., & Franks, D. (2015). Social impact assessment: Guidance for assessing and managing the social impacts of projects. International Association for Impact Assessment. https://www.researchgate.net/publication/274254726_Social_Impact_Assessment_Guidance_for_Assessing_and_Managing_the_Social_Impacts_of_Projects.
Verbeeck, K., De Vrieze, J., Pikaar, I., Verstraete, W., & Rabaey, K. (2021). Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production. Microbial Biotechnology, 14(3), 897–910. https://doi.org/10.1111/1751-7915.13600.
Voigt, C., Virkkala, A.-M., Hould Gosselin, G., Bennett, K. A., Black, T. A., Detto, M., ChevrierDion, C., Guggenberger, G., Hashmi, W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykänen, H., Saarela, T., Sauheitl, L., Walker, B., … Sonnentag, O. (2023). Arctic soil methane sink increases with drier conditions and higher ecosystem respiration. Nature Climate Change, 13(10), 1095–1104. https://doi.org/10.1038/s41558-023-01785-3.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G. M., Gutjahr, M., Ridgwell, A., & Kohfeld, K. E. (2019). Ice sheets matter for the global carbon cycle. Nature Communications, 10(1), Article 3567. https://doi.org/10.1038/s41467-019-11394-4.
Walker, G. (2010). Environmental justice, impact assessment and the politics of knowledge: The implications of assessing the social distribution of environmental outcomes. Environmental Impact Assessment Review, 30(5), 312–318. https://doi.org/10.1016/j.eiar.2010.04.005.
Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T., Ping, C.-L., Chanton, J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9(9), 679–682. https://doi.org/10.1038/ngeo2795.
Walter Anthony, K. M., Anthony, P., Grosse, G., & Chanton, J. (2012). Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5(6), 419–426. https://doi.org/10.1038/ngeo1480.
Walter Anthony, K. M., Anthony, P., Hasson, N., Edgar, C., Sivan, O., Eliani-Russak, E., Bergman, O., Minsley, B. J., James, S. R., Pastick, N. J., Kholodov, A., Zimov, S., Euskirchen, E., Bret-Harte, M. S., Grosse, G., Langer, M., & Nitzbon, J. (2024). Upland Yedoma taliks are an unpredicted source of atmospheric methane. Nature Communications, 15(1), Article 6056. https://doi.org/10.1038/s41467-024-50346-5.
Walter Anthony, K. M., Lindgren, P., Hanke, P., Engram, M., Anthony, P., Daanen, R. P., Bondurant, A., Liljedahl, A. K., Lenz, J., Grosse, G., Jones, B. M., Brosius, L., James, S. R., Minsley, B. J., Pastick, N. J., Munk, J., Chanton, J. P., Miller, C. E., & Meyer, F. J. (2021). Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environmental Research Letters, 16(3), Article 035010. https://doi.org/10.1088/1748-9326/abc848.
Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B., & Grosse, G. (2018). 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications, 9(1), Article 3262. https://doi.org/10.1038/s41467-018-05738-9.
Wang, C., Xu, Y., & Tang, J. (2023). Catalytic methane removal to mitigate its environmental effect. Science China Chemistry, 66(4), 1032–1051. https://doi.org/10.1007/s11426-022-1487-8.
Wang, J., Zhao, Y., Zhou, M., Hu, J., & Hu, B. (2023). Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. Science of the Total Environment, 867, Article 161437. https://doi.org/10.1016/j.scitotenv.2023.161437.
Wang, S., An, Z., & Wang, Z.-W. (2020). Chapter five—Bioconversion of methane to chemicals and fuels by methane-oxidizing bacteria. In Y. Li & S. K. Khanal (Eds.), Advances in bioenergy (Vol. 5, pp. 169–247). Elsevier. https://doi.org/10.1016/bs.aibe.2020.04.005.
Wang, V. C.-C., Maji, S., Chen, P. P.-Y., Lee, H. K., Yu, S. S.-F., & Chan, S. I. (2017). Alkane oxidation: Methane monooxygenases, related enzymes, and their biomimetics. Chemical Reviews, 117(13), 8574–8621. https://doi.org/10.1021/acs.chemrev.6b00624.
Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T., Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B. H., & Thornton, J. A. (2021). Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 21(18), 13973–13996. https://doi.org/10.5194/acp-21-13973-2021.
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., & Liao, H. (2019). The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 19(6), 3981–4003. https://doi.org/10.5194/acp-19-3981-2019.
Wang, Y., Ming, T., Li, W., Yuan, Q., de Richter, R., Davies, P., & Caillol, S. (2022). Atmospheric removal of methane by enhancing the natural hydroxyl radical sink. Greenhouse Gases: Science and Technology, 12(6), 784–795. https://doi.org/10.1002/ghg.2191.
Wang, Y., Xue, D., Chen, X., Qiu, Q., & Chen, H. (2024). Structure and functions of endophytic bacterial communities associated with sphagnum mosses and their drivers in two different nutrient types of peatlands. Microbial Ecology, 87(1), Article 47. https://doi.org/10.1007/s00248-024-02355-6.
Warwick, N. J., Archibald, A. T., Griffiths, P. T., Keeble, J., O’Connor, F. M., Pyle, J. A., & Shine, K. P. (2023). Atmospheric composition and climate impacts of a future hydrogen economy. Atmospheric Chemistry and Physics, 23(20), 13451–13467. https://doi.org/10.5194/acp-23-13451-2023.
Webb, E. E., Liljedahl, A. K., Cordeiro, J. A., Loranty, M. M., Witharana, C., & Lichstein, J. W. (2022). Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nature Climate Change, 12(9), 841–846. https://doi.org/10.1038/s41558-022-01455-w.
Webb, R. (2020). The law of enhanced weathering for carbon dioxide removal. Sabin Center for Climate Change Law, Columbia Law School. https://scholarship.law.columbia.edu/sabin_climate_change/46.
Webb, R. (2023, September 28). The evolving legal landscape for ocean-based carbon dioxide removal. Climate Law Blog. https://blogs.law.columbia.edu/climatechange/2023/09/28/the-evolving-legal-landscape-for-ocean-based-carbon-dioxide-removal/.
Webb, R., Lockman, M., & Silverman-Roati, K. (2024). Removing methane via atmospheric oxidation enhancement: The legal framework. Sabin Center for Climate Change Law. https://scholarship.law.columbia.edu/sabin_climate_change/229.
Weber, E. U., & Stern, P. C. (2011). Public understanding of climate change in the United States. American Psychologist, 66(4), 315–328. https://doi.org/10.1037/a0023253.
Weldeab, S., Schneider, R. R., Yu, J., & Kylander-Clark, A. (2022). Evidence for massive methane hydrate destabilization during the penultimate interglacial warming. Proceedings of the National Academy of Sciences, 119(35), Article e2201871119. https://doi.org/10.1073/pnas.2201871119.
West, T. A. P., Wunder, S., Sills, E. O., Börner, J., Rifai, S. W., Neidermeier, A. N., Frey, G. P., & Kontoleon, A. (2023). Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science, 381(6660), 873–877. https://doi.org/10.1126/science.ade3535.
Western, L. M., Vollmer, M. K., Krummel, P. B., Adcock, K. E., Crotwell, M., Fraser, P. J., Harth, C. M., Langenfelds, R. L., Montzka, S. A., Mühle, J., O’Doherty, S., Oram, D. E., Reimann, S., Rigby, M., Vimont, I., Weiss, R. F., Young, D., & Laube, J. C. (2023). Global increase of ozone-depleting chlorofluorocarbons from 2010 to 2020. Nature Geoscience, 16(4), 309–313. https://doi.org/10.1038/s41561-023-01147-w.
Whitmarsh, L., Xenias, D., & Jones, C. R. (2019). Framing effects on public support for carbon capture and storage. Palgrave Communications, 5(1), Article 17. https://doi.org/10.1057/s41599-019-0217-x.
Wibeck, V., Hansson, A., & Anshelm, J. (2015). Questioning the technological fix to climate change–Lay sense-making of geoengineering in Sweden. Energy Research & Social Science, 7, 23–30. https://doi.org/10.1016/j.erss.2015.03.001.
Wildavsky, A., & Dake, K. (1990). Theories of risk perception: Who fears what and why? Daedalus, 119(4), 41–60.
Wilson, T. D. (2022). What is social psychology? The construal principle. Psychological Review, 129(4), 873–889. https://doi.org/10.1037/rev0000373.
Wittmer, J., Bleicher, S., Ofner, J., & Zetzsch, C. (2015). Iron(III)-induced activation of chloride from artificial sea-salt aerosol. Environmental Chemistry, 12(4), 461–475. https://doi.org/10.1071/EN14279.
Wittmer, J., Bleicher, S., & Zetzsch, C. (2015). Iron(III)-induced activation of chloride and bromide from modeled salt pans. The Journal of Physical Chemistry A, 119(19), 4373–4385. https://doi.org/10.1021/jp508006s.
Wittmer, J., & Zetzsch, C. (2017). Photochemical activation of chlorine by iron-oxide aerosol. Journal of Atmospheric Chemistry, 74(2), 187–204. https://doi.org/10.1007/s10874-016-9336-6.
WMO (World Meteorological Organization). (2022). Scientific assessment of ozone depletion: 2022: Executive summary. World Meteorological Organization. https://ozone.unep.org/system/files/documents/Scientific-Assessment-of-Ozone-Depletion-2022-Executive-Summary.pdf.
WMO. (2024). State of the global climate 2023 (WMO-No. 1347). https://library.wmo.int/idurl/4/68835.
Wu, B., Xi, B., He, X., Sun, X., Li, Q., Ouche, Q., Zhang, H., & Xue, C. (2020). Methane emission reduction enhanced by hydrophobic biochar-modified soil cover. Processes, 8(2), Article 162. https://doi.org/10.3390/pr8020162.
Wu, J., Chen, Q., Jia, W., Long, C., Liu, W., Liu, G., & Cheng, X. (2020). Asymmetric response of soil methane uptake rate to land degradation and restoration: Data synthesis. Global Change Biology, 26(11), 6581–6593. https://doi.org/10.1111/gcb.15315.
Wu, J., Li, Q., Chen, J., Lei, Y., Zhang, Q., Yang, F., Zhang, D., Zhang, Q., & Cheng, X. (2018). Afforestation enhanced soil CH4 uptake rate in subtropical China: Evidence from carbon stable isotope experiments. Soil Biology and Biochemistry, 118, 199–206. https://doi.org/10.1016/j.soilbio.2017.12.017.
Xia, N., Du, E., Wu, X., Tang, Y., Wang, Y., & de Vries, W. (2020). Effects of nitrogen addition on soil methane uptake in global forest biomes. Environmental Pollution, 264, Article 114751. https://doi.org/10.1016/j.envpol.2020.114751.
Yale Law School. (n.d.). Procedural justice. The Justice Collaboratory. https://law.yale.edu/justice-collaboratory/procedural-justice.
Yoon, S., Carey, J. N., & Semrau, J. D. (2009). Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Applied Microbiology and Biotechnology, 83(5), 949–956. https://doi.org/10.1007/s00253-009-1977-9.
Yoshida, N., Iguchi, H., Yurimoto, H., Murakami, A., & Sakai, Y. (2014). Aquatic plant surface as a niche for methanotrophs. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00030.
Yurimoto, H., & Sakai, Y. (2022). Interaction between C1-microorganisms and plants: Contribution to the global carbon cycle and microbial survival strategies in the phyllosphere. Bioscience, Biotechnology, and Biochemistry, 87(1), 1–6. https://doi.org/10.1093/bbb/zbac176.
Zhang, L., Lin, W., Sardans, J., Li, X., Hui, D., Yang, Z., Wang, H., Lin, H., Wang, Y., Guo, J., Peñuelas, J., & Yang, Y. (2024). Soil warming-induced reduction in water content enhanced methane uptake at different soil depths in a subtropical forest. Science of the Total Environment, 927, Article 171994. https://doi.org/10.1016/j.scitotenv.2024.171994.
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., & Boesch, H. (2021). Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 21(5), 3643–3666. https://doi.org/10.5194/acp-21-3643-2021.
Zhang, Z., Poulter, B., Feldman, A. F., Ying, Q., Ciais, P., Peng, S., & Li, X. (2023). Recent intensification of wetland methane feedback. Nature Climate Change, 13, 430–433. https://doi.org/10.1038/s41558-023-01629-0.
Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., Huang, C., & Poulter, B. (2017). Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the National Academy of Sciences, 114(36), 9647–9652. https://doi.org/10.1073/pnas.1618765114.
Zhao, Q., Wang, Y., Xu, Z., & Yu, Z. (2021). How does biochar amendment affect soil methane oxidation? A review. Journal of Soils and Sediments, 21(4), 1575–1586. https://doi.org/10.1007/s11368-021-02889-z.
Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., Hauglustaine, D. A., Szopa, S., Stavert, A. R., Abraham, N. L., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Josse, B., Kinnison, D., Kirner, O., … Zheng, B. (2019). Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmospheric Chemistry and Physics, 19(21), 13701–13723. https://doi.org/10.5194/acp-19-13701-2019.
Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Hegglin, M. I., Canadell, J. G., Jackson, R. B., & Zheng, B. (2023). Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations. Atmospheric Chemistry and Physics, 23(1), 789–807. https://doi.org/10.5194/acp-23-789-2023.
Zhu, Q., Laughner, J. L., & Cohen, R. C. (2022). Combining machine learning and satellite observations to predict spatial and temporal variation of near surface OH in North American cities. Environmental Science & Technology, 56(11), 7362–7371. https://doi.org/10.1021/acs.est.1c05636.
Zhu, X., Zhou, J., & Cai, Z. (2011). TiO2 nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environmental Science & Technology, 45(8), 3753–3758. https://doi.org/10.1021/es103779h.
Zickfeld, K., MacIsaac, A. J., Canadell, J. G., Fuss, S., Jackson, R. B., Jones, C. D., Lohila, A., Matthews, H. D., Peters, G. P., Rogelj, J., & Zaehle, S. (2023). Net-zero approaches must consider Earth system impacts to achieve climate goals. Nature Climate Change, 13(12), 1298–1305. https://doi.org/10.1038/s41558-023-01862-7.