Load Rating of Segmental Bridges (2024)

Chapter: References

Previous Chapter: 7 Summary of Conclusions
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

References

AASHTO. (2020a). LRFD Bridge Design Specifications, 9th ed. Washington, DC.

AASHTO. (2020b). The Manual for Bridge Evaluation, 3rd ed., with 2020 Interim Revisions. Washington, DC.

AASHTO. (2019). Manual for Bridge Element Inspection, 2nd ed. Washington, DC.

AASHTO. (2012). LRFD Bridge Design Specifications, 6th ed. Washington, DC.

AASHTO. (2002). Standard Specifications for Highway Bridges, 17th ed. Washington, DC.

AASHTO. (1999). Guide Specifications for Design and Construction of Segmental Concrete Bridges, 2nd ed. Washington, DC.

AASHTO. (1989a). Guide Specifications for Design and Construction of Segmental Concrete Bridges, 1st ed. Washington, DC.

AASHTO. (1989b). Guide Specifications for Thermal Effects in Bridge Superstructures. Washington, DC.

ACI Committee 209. (2008). Guide for Modeling and Calculating Shrinkage and Creep of Concrete (ACI 209.2R-08). American Concrete Institute, Farmington Hills, MI.

ACI Committee 209. (2005). Factors Affecting Shrinkage and Creep of Hardened Concrete (ACI 209.1R). American Concrete Institute, Farmington Hills, MI.

ACI Committee 209. (1992). Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (ACI 209R-92). American Concrete Institute, Farmington Hills, MI.

ACI Committee 318. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, MI.

ACI Committee 363. (2010). Report on High-Strength Concrete (363R-10). American Concrete Institute, Farmington Hills, MI.

Ainge, S. (2012). Repair and Strengthening of Bridge Substructures. MS thesis. Marquette University. https://epublications.marquette.edu/theses_open/173.

American Institute of Steel Construction (1986). Load and Resistance Factor Design Specifications for Structural Steel Buildings, Chicago, IL.

Barker, J. M. (1978). Post-Tensioned Box Girder Bridge Manual. Post-Tensioning Institute, Farmington Hills, MI.

Bažant, Z. P. (1972). Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method. Journal of the American Concrete Institute, 69(4), 212–217.

Bažant, Z. P., and Baweja, S. (1995). Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures—Model B3. Materials and Structures, Vol. 28, pp. 357–365, 415–430, 488–495.

Bažant, Z. P., Li, G. H., Yu, Q., Klein, G., and Kristek, V. (2008). Explanation of Excessive Long-Time Deflections of Collapsed Record-Span Box Girder Bridge in Palau. Preliminary Report, (08-09), A222e.

Belletti, B., Rodríguez, J., Andrade, C., Franceschini, L., Sanchez Montero, J., and Vecchi, F. (2020). Experimental Tests on Shear Capacity of Naturally Corroded Prestressed Beams. Structural Concrete, 21(5), pp. 1777–1793.

Cakmak, F., Menkulasi, F., Eamon, C. (2022a). Time Dependent Flexural Deformations in Composite Prestressed Concrete and Steel Beams: Part I—Prediction Methodology. ASCE Journal of Bridge Engineering, Vol. 27, Issue 5, Feb.

Cakmak, F., Menkulasi, F., Eamon, C. (2022b). Time Dependent Flexural Deformations in Composite Prestressed Concrete and Steel Beams: Part II—Comparison of Predictions. ASCE Journal of Bridge Engineering, Vol. 27, Issue 5, Feb.

CEB-FIP. (1990). Model Code 1990. CEB Bulletins. https://www.fib-international.org/publications/ceb-bulletins/ceb-fip-model-code-90-pdf-detail.html.

CEB-FIP. (1983). Model Code 1983. CEB Bulletins. https://www.fib-international.org/publications/ceb-bulletins.html.

CEB-FIP. (1978). Model Code 1978. CEB Bulletins. https://www.fib-international.org/publications/ceb-bulletins.html.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

Chen, W. F., Duan, L. (2014). Segmental Concrete Bridges from Bridge Engineering Handbook, Superstructure Design, CRC Press, Boca Raton, FL.

Chiorino, M. A. (2018). Analysis of Structural Effects of Time Dependent Behaviour of Concrete: An Internationally Harmonized Format. Вестник НИЦ Строительство, (1), pp. 31–47.

Collins, M. P., and Mitchell, D. (1991). Prestressed Concrete Structures. Prentice Hall, Hoboken, NJ.

Coronelli, D., Castel, A., Vu, N. A., and François, R. (2009). Corroded Post-Tensioned Beams with Bonded Tendons and Wire Failure. Engineering Structures, 31(8), 1687–1697. https://doi.org/10.1016/j.engstruct.2009.02.043.

Corven Engineering, Inc. (2004). New Directions for Florida Post-Tensioned Bridges—Volume 10A: Load Rating Post-Tensioned Concrete Segmental Bridges. Florida Department of Transportation, Tallahassee.

Corven Engineering, Inc. (2003). Load Rating Segmental Bridges Consistent with LRFR Requirements, Tallahassee, FL.

Corven, J. (2016). Post-Tensioned Box Girder Design Manual-Task 3: Post-Tensioned Box Girder Design Manual. No. FHWA-HIF-15-016. Tallahassee, FL.

Danon, J. R., and Gamble, L. (1977). Time-Dependent Deformations and Losses in Concrete Bridges Built by the Cantilever Method. University of Illinois Engineering Experiment Station, College of Engineering. University of Illinois at Urbana-Champaign.

Darmawan, M. S., and Stewart, M. G. (2007). Spatial Time-Dependent Reliability Analysis of Corroding Pretensioned Prestressed Concrete Bridge Girders. Structural Safety, 29(1), 16–31. https://doi.org/10.1016/j.strusafe.2005.11.002.

Devalapura, R. and Tadros, M. (1992). Stress-Strain Modeling of 270 ksi Low-Relaxation Prestressing Strands. PCI Journal, March–April, pp. 100–106.

DIN 1075 Concrete Bridges; Dimensioning and Construction Standard by Deutsches Institut Fur Normung E.V. (German National Standard), 04/01/1981.

Dischinger, F. (1937). Untersuchungen über die Knicksicherheit, die elastische Verformung und das Kriechen des Betons bei Bogenbrücken. Der Bauingenieur, 18(33/34), 487–529 and No. 35/36, 539–552 and No.39/40, 595–621.

fib. 2010. Model Code for Concrete Structures 2010. Lausanne, Switzerland: International Federation for Structural Concrete.

FDOT. (2021). Bridge Load Rating Manual. Florida Department of Transportation, Tallahassee. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/maintenance/str/lr/2021-load-rating-manual.pdf?sfvrsn=4839412_2.

FDOT. (2017). Bridge Load Rating Manual. Florida Department of Transportation, Tallahassee. https://www.fdot.gov/docs/default-source/maintenance/str/lr/2017_Load_Rating_Manual_02-20-17.pdf.

FDOT. (2002). New Directions for Florida Post-Tensioned Bridges. Florida Department of Transportation, Tallahassee, Florida.

Franceshini, L., Vecchi, F., Tondolo, F., Belletti, B., and Sanchez Montero, J. (2022). Mechanical Behaviour of Corroded Strands Under Chloride Attach: A New Constitutive Law. Construction and Building Materials, Volume 316. https://doi.org/10.1016/j.conbuildmat.2021.125872.

Gardner, N. J. (2004). Comparison of Prediction Provisions for Drying Shrinkage and Creep of Normal Strength Concretes. Canadian Journal for Civil Engineering, Vol. 31, No. 5, Sept.–Oct., pp. 767–775.

Genikomsou, A., and Polak, M. (2015). Finite Element Analysis of Punching Shear of Concrete Slabs Using Damaged Plasticity Model in ABAQUS. Engineering Structures, 98, pp. 38–48.

Ghosn, M., and Moses, F. (1998). NCHRP Report 406: Redundancy in Highway Bridge Superstructures. TRB, National Research Council, Washington, DC.

Ghosn, M., Yang, J., Beal, D., and Sivakumar, B. (2014). NCHRP Report 776: Bridge System Safety and Redundancy. Transportation Research Board of the National Academies, Washington, DC.

Giaccu, G. F., Solinas, D., Briseghella, B., and Fenu, L. (2021). Time-Dependent Analysis of Precast Segmental Bridges. International Journal of Concrete Structures and Materials, 15(1), pp. 1–21.

Gilbert, R. I., and Ranzi, G. (2011). Time-Dependent Behavior of Concrete Structures. CRC Press. Tallahassee, FL.

Glanville, W. H. (1930). Studies in Reinforced Concrete—III, The Creep or Flow of Concrete Under Load. Building Research Technical Paper No. 12, Department of Scientific and Industrial Research, London, UK.

Gross, S. P. (2000). Field Performance of Prestressed High-Performance Concrete Highway Bridges in Texas, PhD dissertation. The University of Texas at Austin. https://www.proquest.com/docview/304459538/abstract/B5B36CFBEBAB4C51PQ/1.

Guo, T., Sause, R., Frangopol, D. M., and Li, A. (2011). Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage, and Corrosion. Journal of Bridge Engineering, 16(1), 29–43. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000135.

Haixue, L., and Whitmore, D. (2013). Post-Tensioning Corrosion Evaluation and Mitigation (Poster). 2013 Conference and Exhibition of the Transportation Association of Canada—Transportation: Better - Faster - Safer. https://trid.trb.org/view/1301829.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

Hartt, W. H., and Lee, S.-K. (2016). Projecting Corrosion Induced Bridge Tendon Failure Resulting from Deficient Grout: Part I—Model Development and Example Results. Corrosion 2016, Vancouver, Canada. https://onepetro.org/NACECORR/proceedings/CORR16/All-CORR16/NACE-2016-7121/123493.

Hatami, A., Morcous, G., and University of Nebraska–Lincoln. (2011). Developing Deterioration Models for Nebraska Bridges. (SPR-P1(11) M302). https://rosap.ntl.bts.gov/view/dot/24746.

Hedegaard, B. D., French, C. E., and Shield, C. K. (2013). Investigation of Thermal Gradient Effects in the I-35W St. Anthony Falls Bridge. Journal of Bridge Engineering, 18(9), pp. 890–900.

Hognestad, E. (1951). Study of Combined Bending and Axial Load in Concrete Members. University of Illinois Engineering Experimental Station Bulletin No. 399. College of Engineering. University of Illinois at Urbana-Champaign.

Homberg, H. (1968). Fabrhahn Platten mit Veranderlicher Dicke. Springer-Verlag, New York.

Huang, D., and Hu, B. (2020). Concrete Segmental Bridges: Theory, Design, and Construction to AASHTO LRFD Specifications. CRC Press, Tallahassee, FL.

Imbsen, R. A., Vandershaf, D. E., Schamber, R. A., and Nutt, R. V. (1985). NCHRP Report 276: Thermal Effects in Concrete Bridge Superstructures. TRB, National Research Council, Washington, DC.

Jeon, C.-H., Lee, J.-B., Lon, S., and Shim, C.-S. (2019). Equivalent Material Model of Corroded Prestressing Steel Strand. Journal of Materials Research and Technology, 8(2), pp. 2450–2460. https://doi.org/10.1016/j.jmrt.2019.02.010.

Jones, B. (2010). Microbes in Caves: Agents of Calcite Corrosion and Precipitation. Geological Society, London, Special Publications, 336(1), pp. 7–30.

Kamaitis, Z. (2002). Damage to Concrete Bridges Due to Reinforcement Corrosion. Transport, 17(4), pp. 137–142. https://doi.org/10.1080/16483840.2002.10414030.

Ketchum, M. A. (1986). Redistribution of Stresses in Segmentally Erected Prestressed Concrete Bridges. University of California–Berkeley.

Kuhn, D. (2008). Transverse Analysis and Field Measurements of Segmental Box Girder Bridges. (MS thesis, Florida State University, Tallahassee.

Kulicki, J., Prucz, Z., Clancy, C., Mertz, D., and Nowak, A. (2007). Updating the Calibration Report for AASHTO LRFD Code. Final Report for NCHRP Project 20-7, Task 186. Transportation Research Board of the National Academies, Washington, DC. https://onlinepubs.trb.org/onlinepubs/Archive/NotesDocs/20-07(186)_FR.pdf.

Kupfer, H., Hilsdorf, H., and Rusch, H. (1969). Behavior of Concrete under Biaxial Stresses. ACI Journal, 66(8), pp. 656–666.

Kurian, B. (2008). Transverse Bending Analysis of Concrete Box Girder Bridges with Flange Overhangs. Journal of Structural Engineering, 35(3).

Kurian, B. (2006). Simplified Method for Transverse Bending Analysis of Concrete Box-Girder Bridges. Journal of Structural Engineering, 33(2).

Kurian, B., and Menon, D. (2005). Correction of Errors in Simplified Transverse Bending Analysis of Concrete Box-Girder Bridges. Journal of Bridge Engineering, 10(6), pp. 650–657. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(650).

Lee, S.-K., and Zielske, J. (2014). An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds. FHWA-HRT-14-039. https://trid.trb.org/view/1313861.

Libby, J. R. (1976). Segmental Box Girder Bridge Superstructure Design. Journal Proceedings, 73(5), pp. 279–290. https://doi.org/10.14359/11073.

Lou, P., Yang, C., and Nassif, H. (2023). Live Load Multiple Presence Factors for Design and Evaluation of Short-to-Medium Span Highway Bridges. Transportation Research Record: Journal of the Transportation Research Board, No. 2677(10), pp. 204–219.

Lou, P., Yang, C., and Nassif, H. (2021). Impact of Specialized Hauling Vehicles and Emergency Vehicles on Bridge Load Rating. Transportation Research Record: Journal of the Transportation Research Board, No. 2675(10), pp. 1012–1024.

Lubliner, J., Oliver, J., Oller, S., and Oñate, E. (1989). A Plastic-Damage Model for Concrete. International Journal of Solids and Structures, 25(3), pp. 299–326.

Maguire, M., Moen, C. D., Roberts-Wollmann, C., and Cousins, T. (2015). Field Verification of Simplified Analysis Procedures for Segmental Concrete Bridges. Journal of Structural Engineering, 141(1), D4014007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001111.

Magura, D. D., Sozen, M. A., and Siess, C. P. (1962). A Study of Stress Relaxation in Prestressing Reinforcement. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign.

Malm, R., and Sundquist, H. (2010). Time-Dependent Analyses of Segmentally Constructed Balanced Cantilever Bridges. Engineering Structures, 32(4), pp. 1038–1045. https://doi.org/10.1016/j.engstruct.2009.12.030.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

Mante, D., Barnes, R., Isbiliroglu, L. Hofrichter, A., and Schindler, A. (2019). Effective Strategies for Improving Camber Predictions in Precast, Prestressed Concrete Bridge Girders. Transportation Research Record: Journal of the Transportation Research Board, No. 2673, pp. 342–354. https://doi.org/10.1177/0361198119833965.

Mlynarski, M., Wassef, W. G., and Nowak, A. S. (2011). NCHRP Report 700: A Comparison of AASHTO Bridge Load Rating Methods. Transportation Research Board of the National Academies, Washington, DC.

Modjeski and Masters, Inc., University of Nebraska–Lincoln, University of Delaware, and NCS Consultants, LLC. 2015. SHRP2 Report S2-R19B-RW-1: Bridges for Service Life Beyond 100 Years: Service Limit State Design. Transportation Research Board of the National Academies, Washington, DC. https://doi.org/10.17226/22441.

Moomen, M., Qiao, Y., Agbelie, B., Labi, S., and Sinha, K. (2016). Bridge Deterioration Models to Support Indiana’s Bridge Management System. JTRP Technical Reports. https://doi.org/10.5703/1288284316348.

Moore, A., Williams, C., Al-Tarafany, D., Felan, J., Massey, J. Nguyen, T., Schmidt, K. Wald, D., Bayrak, O., Jirsa, J., and Ghannoum, W. (2015). Shear Behavior of Spliced Post-Tensioned Girders. Center for Transportation Research, The University of Texas at Austin. http://library.ctr.utexas.edu/ctr-publications/0-6652-1.pdf.

Moreton, A. (1998). Segmental Analysis and Design Fundamentals. Recommended Practice for Design and Construction of Segmental Concrete Bridges.

Moses, F. (2001). NCHRP Report 454: Calibration of Load Factors for LRFR Bridge Evaluation. Transportation Research Board of the National Academies, Washington, DC.

Moses, F., and Verma, D. (1987). NCHRP Report 301: Load Capacity Evaluation of Existing Bridges. TRB, National Research Council, Washington, DC. https://trid.trb.org/view/282396.

Muller, H. S., and Hilsdorf, H. K. (1990). General Task Group 9. CEB Comité Euro-International du Béton, Paris, France, 201 pp.

Naaman, A. E., and Siriaksorn, A. (1982). Reliability of Partially Prestressed Beams at Serviceability Limit States. PCI Journal, 20.

Naderimoghaddam, T. (2018). A Comparison of Bridge Deterioration Models. MA thesis. Georgia Southern University.

Naito, C., Sause, R. Hodgson, I., Pessiki, S., and Desai, C. (2006). Forensic Evaluation of Prestressed Box Beams from the Lake View Drive over I-70 Bridge. ATLSS Report No. 06-13. Lehigh University, Bethlehem, PA.

Nowak, A. (1999). NCHRP Report 368: Calibration of LRFD Bridge Design Code. TRB, National Research Council, Washington, DC.

Nowak, A. S., and Collins, K. R. (2013). Reliability of Structures, 2nd ed. CRC Press, Tallahassee, FL.

Nowak, A., and Szerszen, M. M. (2003). Calibration of Resistance Factors for the Design of Concrete Structures. International Symposium on High Performance Computing.

Nowak, A., Szerszen, M. M., Szeliga, E., Szwed, A., and Podhorecki, P. (2008). Reliability-Based Calibration for Structural Concrete, Phase 3. Portland Cement Association, Research and Development Serial, No. 2849, pp. 1–110.

Pielstick, B., and Offredi, L. (2012). ASBI Durability Survey of Segmental Concrete Bridges. ASBI. https://www.asbi-assoc.org/.

Poston, R. W., and Wouters, J. P. (1998). NCHRP Web-Only Document 15: Durability of Precast Segmental Bridges. TRB, National Research Council, Washington, DC. https://trid.trb.org/view/500506.

Powers, R. G., Sagüés, A. A., and Virmani, Y. P. (2002). Corrosion of Post-Tensioned Tendons in Florida Bridges. Research Report No. FL/DOT/SMO/04-47516. https://www.fdot.gov/docs/default-source/materials/administration/resources/library/publications/researchreports/structures/04-475.pdf.

Pucher, A. (1977). Influence Surfaces of Elastic Plates. Springer-Verlag, Vienna.

Purvis, R. L., Graber, D. R., Clear, K. C., and Markow, M. J. (1992). SHRP-C/UFR-92-613: A Literature Review of Time-Deterioration Prediction Techniques. TRB, National Research Council, Washington, DC.

Rafols, J. C., Lau, K., Lasa, I., Paredes, M., and ElSafty, A. (2013). Approach to Determine Corrosion Propensity in Post-Tensioned Tendons with Deficient Grout. Open Journal of Civil Engineering, Vol. 3, No. 3. https://doi.org/10.4236/ojce.2013.33022.

Ren, W., Sneed, L., Yang, Y., He, R. (2015). Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model. International Journal of Concrete Structures and Materials, 9(1), pp. 45–54.

Rizkalla, S., Zia, P., and Storm, T. (2011). Predicting Camber, Deflection, and Prestress Losses in Prestressed Concrete Members. Final Project Report, Raleigh, NC: North Carolina State University.

Roberts, C. L. (1993). Measurement-Based Revisions for Segmental Bridge Design and Construction Criteria. PhD dissertation. The University of Texas at Austin. https://www.proquest.com/docview/304070518/abstract/ACCCEB608D144740PQ/1.

Roberts-Wollmann, C. L., Breen, J. E., and Cawrse, J. (2002). Measurements of Thermal Gradients and Their Effects on Segmental Concrete Bridge. Journal of Bridge Engineering, 7(3), pp. 166–174.

Roberts-Wollmann, C. L., Breen, J. E. and Kreger, M. E. (2001). Live Load Tests of the San Antonio “Y.” Journal of Bridge Engineering, 6(6), pp. 556–563.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

Roelfstra, G., Hajdin, R., Adey, B., and Brühwiler, E. (2004). Condition Evolution in Bridge Management Systems and Corrosion-Induced Deterioration. Journal of Bridge Engineering, 9(3), pp. 268–277. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:3(268).

Rosa, M. A., Stanton, J. F. and Eberhard, M. O. 2007. Improving Predictions for Camber in Precast, Prestressed Concrete Bridge Girders. Research Report, University of Washington, Seattle, WA: Washington State Transportation Center (TRAC).

Salas, R. M., Kotys, A. L., West, J. S., Breen, J. E., and Kreger, M. E. (2002). Final Evaluation of Corrosion Protection for Bonded Internal Tendons in Precast Segmental Construction. Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin.

Salas, R., Schokker, A. J., West, J. S., Breen, J. E., and Kreger, M. E. (2008). Corrosion Risk of Bonded, Post-Tensioned Concrete Elements. PCI Journal, January–February.

Shushkewich, K. W. (1986). Time-Dependent Analysis of Segmental Bridges. Computers & Structures, 23(1), pp. 95–118.

Sivakumar, B., Ghosn, M., and Moses, F. (2011). NCHRP Report 683: Protocols for Collecting and Using Traffic Data in Bridge Design. Transportation Research Board of the National Academies, Washington, DC.

Southgate, H. F. 2000. Quality Assurance of Weigh-in-Motion Data. FHWA Contract, No. DTFH61-P-00724. Federal Highway Administration, U.S. DOT, Washington DC.

Tadros, M. K., Al-Omaishi, N., Seguirant, S. J., and Gallt, J. G. (2003). NCHRP Report 496: Prestress Losses in Pretensioned High-Strength Concrete Bridge Girders. Transportation Research Board of the National Academies, Washington, DC.

Tassin, D. (1998). Design of Precast Segmental Bridges Build Span-by-Span. Recommended Practice for Design and Construction of Segmental Concrete Bridges.

Trejo, D., Hueste, M. B. D., Gardoni, P., et al. (2009). Effect of Voids in Grouted, Post-Tensioned Concrete Bridge Construction: Volume 1—Electrochemical Testing and Reliability Assessment. FHWA/TX-09/0-4588-1, Vol. 1. https://rosap.ntl.bts.gov/view/dot/16989.

Trejo, D., Pillai, R., Hueste, M. B., Reinschmidt, K., and Gardoni, P. (2009). Parameters Influencing Corrosion and Tension Capacity of Post-Tensioning Strands. ACI Materials Journal, 106, pp. 144–153.

Trost, H. (1967). Auswirkungen des Superpositionsprinzips auf Kriech-und Relaxations-Probleme bei Beton und Spannbeton. Beton-und Stahlbetonbau, 62(10), pp. 230–238.

Val, D. V., and Melchers, R. E. (1997). Reliability of Deteriorating RC Slab Bridges. Journal of Structural Engineering, 123(12), pp. 1638–1644. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1638).

Vecchio, F., and Collins, M. (1986). The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal, March–April, pp. 219–231.

Virmani, P. (2003). Mitigation of Corrosion in Concrete Bridges. https://www.semanticscholar.org/paper/mitigation-of-corrosion-in-concrete-bridges-Virmani/51a7911615fe38e9f0590abc760aac42686e231c.

Virmani, P. Y., and Ghasemi, H. (2012). Literature Review of Chloride Threshold Values for Grouted Post-Tensioned Tendons. FHWA-HRT-12-067. Federal Highway Administration, Washington, DC.

Washer, G. (2022). Methodology for Risk Assessment of Post-Tensioning Tendons (Tech Brief). https://rosap.ntl.bts.gov/view/dot/61404.

Wassef, W. G., Kulicki, J. M., Nassif, H., Mertz, D., and Nowak, A. S. (2014). NCHRP Web-Only Document 201: Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Transportation Research Board of the National Academies, Washington, DC.

Weigh in Motion Data Sites. 2014. Caltrans: California Department of Transportation. Retrieved from https://dot.ca.gov/programs/traffic-operations/wim/locations.

West, J. S., Breen, J. E., and Vignos, R. P. (2002). Evaluation of Corrosion Protection for Internal Prestressing Tendons in Precast Segmental Bridges. PCI Journal, 47(5), pp. 76–91. https://doi.org/10.15554/pcij.09012002.76.91.

Whitney, C. S. (1932). Plain and Reinforced Concrete Arches. ACI Journal, 28, pp. 479–519.

Woodward, R. J. (1989). Collapse of a Segmental Post-Tensioned Concrete Bridge. Transportation Research Record: Journal of the Transportation Research Board, No. 1211. https://trid.trb.org/view/308412.

Yang, C., Lou, P., and Nassif, H. (2024). Correlation of Bridge Deck Deterioration with Truckload Spectra Based on NBI Condition Rating and Weigh-in-Motion Data. No. FHWA-HRT-24-032. U.S. Department of Transportation. Federal Highway Administration. Office of Research, Development, and Technology, Washington, DC.

Yang, C., Lou, P., and Nassif, H. (2022). Reliability-Based Assessment of Concrete Decks Designed Using Approximate Method at the Strength I Limit State. Transportation Research Record: Journal of the Transportation Research Board, No. 2676(10), pp. 695–707.

Yang, C., Wang, X., and Nassif, H. (2024). Impact of Environmental Conditions on Predicting Condition Rating of Concrete Bridge Decks. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981241248647.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.

Yoo, C.-H., Chul Park, Y., and Kim, H.-K. (2018). Modeling Corrosion Progress of Steel Wires in External Tendons. Journal of Bridge Engineering, 23(12). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001331.

Youn, S.-G., and Kim, E.-K. (2006). Deterioration of Bonded Post-Tensioned Concrete Bridges and Research Topics on the Strength Evaluation in ISARC. 15 p. https://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter07/KSCE_Youn.pdf.

Zhang, X., Wang, L., Zhang, J., and Liu, Y. (2017). Corrosion-Induced Flexural Behavior Degradation of Locally Ungrouted Post-Tensioned Concrete Beams. Construction and Building Materials, 134, pp. 7–17. https://doi.org/10.1016/j.conbuildmat.2016.12.140.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 189
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 190
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 191
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 192
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 193
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Load Rating of Segmental Bridges. Washington, DC: The National Academies Press. doi: 10.17226/28597.
Page 194
Next Chapter: Appendix A: Literature Review
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.