electron gas rises to the point where additional ionization of the neutrals ensues, and a flash ionization of most neutrals occurs.
This phenomenon has great significance for models of young solar systems. To perform comprehensive measurements of the processes involved, it will be necessary to achieve the correct physical scale: the electron gas must be heated over a sufficiently large distance that its temperature can rise to the point where impact ionization of the neutrals becomes important to the overall system of interacting gases. Such experiments lie in the future and will require much more extensive supporting resources than have been possible with small free-flying satellites or rockets.
The topic of radiation processes is relatively new and involves detailed study of the production, transport, and absorption of microwave, infrared, and shorter-wavelength radiation in dense plasmas. However, its implication to the study of astrophysical systems is profound. The interaction of such radiation with matter involves individual molecules, atoms/ions, or electrons—not collective plasma processes. Clearly, radiation processes are of fundamental importance in transporting energy through portions of the Sun and of the Earth's atmosphere. In addition, radiation propagating freely from its source and from optically thick regions is the primary means by which remote sensing is accomplished. The opportunity to study fully coupled electromagnetic radiation with plasma dynamics in the space environment supplements the extensive work done in laboratory plasmas on similar problems.
Active experiments have a broad range of objectives. The techniques used in active experiments include four main categories: (1) injection of plasma and neutral vapor; (2) injection of energetic beams of neutral particles, ions, or electrons; (3) wave injection from ground based systems of acoustic waves and electromagnetic waves in the very-low-frequency (VLF) and HF bands, or injection from space vehicles of VLF, HF, and microwave radiation; and (4) use of the spacecraft as a disturbance to study spacecraft wake, vehicle charging, ram glow, or the electromagnetic effects of tethered systems.
The natural space environment can be modified by the introduction of foreign gases and plasmas to induce or enhance local processes. These include changes of the local ion composition, reduction of the local electron density, changes in the charge state of ions, changes in the average energy of the local
Sign in to access your saved publications, downloads, and email preferences.
Former MyNAP users: You'll need to reset your password on your first login to MyAcademies. Click "Forgot password" below to receive a reset link via email. Having trouble? Visit our FAQ page to contact support.
Members of the National Academy of Sciences, National Academy of Engineering, or National Academy of Medicine should log in through their respective Academy portals.
Thank you for creating a MyAcademies account!
Enjoy free access to thousands of National Academies' publications, a 10% discount off every purchase, and build your personal library.
Enter the email address for your MyAcademies (formerly MyNAP) account to receive password reset instructions.
We sent password reset instructions to your email . Follow the link in that email to create a new password. Didn't receive it? Check your spam folder or contact us for assistance.
Your password has been reset.
Verify Your Email Address
We sent a verification link to your email. Please check your inbox (and spam folder) and follow the link to verify your email address. If you did not receive the email, you can request a new verification link below