A
al-Abbas (ibn Abd-al-Muttalib, uncle of Mohammed), 46
Abbott, Edwin A., 145, 146, 340
Abel, Niels Henrik, 116, 117, 127–128, 129, 130, 131, 154, 217, 333, 334
Abstraction
category theory, 304
numbers, 1
Académie des Sciences, 117, 122, 155, 209, 210, 211, 227, 230, 332
Acnode, 260
Action at a distance, 336
Addition
complex numbers, 13
determinants, 171
fields, 197
matrices 173
Ahmes, 29–30
Airy, George, 182
Akkadian language and writings, 21, 22
d’Alembert, Jean Le Rond, 105
Alexandria, Egypt, 31, 33–34, 42, 44–45, 46, 48
Algebra
as abstraction, 1–2, 231, 293–298
analysis distinguished from, 1
classification of topics, 299, 350
early textbooks, 35, 38, 41, 49, 66, 67, 71, 74–75, 82–83, 87, 88, 90–91, 93, 94
defined, 1
first lecture, 72
future of, 319–320
geometric approach to, 32, 33, 88–89
Algebraic closure, 108, 196, 212
Algebraic geometry, 340.
See also Rings and ring theory
applications, 279
conic equations, 241–248, 255, 260
eccentricity of ellipse, 244–245
Erlangen program, 275–276, 293, 347
fitting curves to points, 170–171
homogeneous coordinates, 153–154, 248, 251, 255, 259, 260, 345
invariants, 243–244, 245, 250, 260–261
line geometry, 251–252, 257, 270, 292
Nullstellensatz (Zero Points Theorem), 262–264, 295, 345, 346
points at infinity, 247, 248, 344
projective, 247–248, 255, 256, 270, 273, 293
transformations, 250–251, 271–273
variety concept, 263–264
Algebraic number theory, 41, 262, 297
Birch and Swinnerton-Dyer conjecture, 289
defined, 288
p-adic numbers, 289–292, 306, 349
Algebraic numbers, 288
Algebraic Surfaces, 296
Algebraic topology
applications, 315
cat’s anus theorem, 348
Brouwer’s fixed-point theorem, 285–286, 348
function theory, 267–268, 281, 284, 305, 344
fundamental groups, 282–283, 284, 302, 348
Jordan loops, 281–282
Lefschetz’s fixed-point theorem, 295
loop families, 282–283
mapping a space into itself, 285–286, 305
Möbius (Listing) strip, 250, 280
point-set (analytical) approach, 285
projective plane, 249–250
of toruses, 281–282
transformations, 250
Algebras
for bracketed triplets, 150–151
classification, 160
Clifford, 156
of complex numbers, 143–144, 149–150, 160, 173
defined, 143
division algebra, 196
Lie, 347
matrices, 173
n-dimensional, 156
noncommutative, 152, 159, 160, 335
real numbers as, 160
zero vector factorization, 159–160
Ali (ibn Abi Talib, son-in-law of Mohammed and fourth Caliph), 46, 325–326
Analytical geometry, 91–92, 97, 153, 255
physical models, 253–254, 258–259
plane curves, 257–258
Analytical Society, 180
Appollonius, 344
Areal coordinates, 345
Arithmetica, 35, 38, 41, 49, 224
Arithmetica Universalis, 99
Artin, Emil, 301
Artin, Michael, 307, 310, 331, 338, 340, 346
Astronomical Society of London, 181
Augusta Victoria, Empress of Germany, 235
Ausdehnunsglehre, 154–156, 159
d’Avalos, Alfonso, 78
Ayres, Jr., Frank, 338
B
Babbage, Charles, 180
Babylonians
astronomy, 23
mathematics, 23, 25–29, 31, 39, 51, 55, 162
problem texts, 25–27
second empire, 323
Balzac, Honoré de, 207
Barycentric Calculus, 153
Barycentric coordinates, 345
Basis, in vector space, 140
Bell, E. T., 126, 206, 208, 209, 228, 333
Berlin Academy, 228
Bernoulli, Jacob, 169
Bernoulli, Johann, 98
Betti, Enrico, 277
Birch and Swinnerton-Dyer conjecture, 289
Birkhoff, Garrett, 299–301, 304
Bishop, Errett, 287
Bismarck, Otto von, 235
Boole, George, 133, 181, 184–187, 338–339
Borrow, George, 334–335
Botta, Paul Émile, 22
Brahma-Gupta, 47
Bring, Erland, 333
Brioschi, Francesco, 277
British Association, 130
British Association for the Advancement of Science, 181
British mathematical culture, 97–99, 103–105, 130, 148, 149–153, 157–158, 174–191
Brougham, Henry, 339
Brouwer, L. E. J., 285, 287–288, 290
Brouwer’s fixed-point theorem, 285–286, 348
Bryn Mawr College, 239
A Budget of Paradoxes, 183
Burger, Dionys, 146
Byzantine empire, 45, 48, 53, 68
C
See Complex numbers.
Calabi conjecture, 318
Calculus, 99, 104, 116, 159, 168, 169, 179–181, 185, 187, 254, 255, 257, 284
Caltech, 316
Cambridge Mathematical Journal, 185
Cambridge University, 99, 261, 333
Campbell, Thomas, 339
Cantor, Georg, 287
Cardano, Giambatista, 74
Cardano, Girolamo, 71, 72–75, 77–80, 83, 168
Carnap, Rudolf, 308
Cartan, Henri, 312
Cartesian coordinate system, 91, 158, 262
Castelnuovo, Guido, 277, 293, 295–296
Category theory, 304–308, 312, 315, 318, 351
Catherine de’ Medici, 85–86
Cat’s anus theorem, 348
Cauchy, Augustin-Louis, 125–126, 127, 129, 130, 131, 132, 152, 155, 172, 174, 208, 209, 227, 228, 231, 293, 299, 332, 333
Cayley, Arthur, 153, 174–175, 181, 185, 187, 191, 213, 214, 217, 260, 261, 270, 317, 335
Cayley numbers, 335
Cayley tables, 189–191, 212, 213
Cech, Eduard, 351
Characteristic function, 149
Charles I, King of Spain, 329
Charles V, Holy Roman Emperor, 74, 78, 85, 329
Charles IX, King of France, 85–86
Charles X, King of France, 207, 209
China
Early Han dynasty, 162–163, 336
language, 337
mathematical culture, 47, 48, 162–164
Nestorians, 325
Qin dynasty, 162–163
Christianity, 43–44, 45, 69, 146, 325
Christina, Queen of Sweden, 94
Christ’s College, Cambridge, 180
Chuquet, Nicolas, 71–72
Class field theory, 299
Clay Mathematics Institute, 283, 349
Clifford, William Kingdon, 156
Clifford algebras, 156
Clock arithmetic, 289–290
Colbert, Jean-Baptiste, 332
Commutativity, 343
complex numbers, 152, 190, 198
in fields, 196
Completed infinities, 287
Complex numbers (
)
algebraic closure, 108
as an algebra, 143–144, 149–150, 160, 173
“big,” 107
cube roots of, 61–62
in cubic equations, 58, 61, 75, 77, 79
discovery and acceptance, 75, 79, 81, 82, 83, 84, 89, 94, 104, 110, 116, 148, 179
Gaussian integers, 226
matrix representation of, 173
multiplying, 13, 84, 149–151, 173
as points, 148
properties, 11–13, 108, 143, 196
quadruplets, 151
real numbers as, 106
on Riemann surfaces, 266
roots of unity, 109–114
triplets, 150–151
as vector space, 143–144
Complex variable theory, 251
Complex-number line, 346
Complex-number plane, 13, 106, 265, 346
cyclotomic points, 110, 111, 331
Confucianism, 163
Confucius, 337
Constantine, 43
Constructivism, 287
Continuous groups, 275–276
Conway, John, 32
Coolidge, Julian Lowell, 278, 347
Cosets, 216
Cossists and Cossick art, 92–93, 329
Counter-Reformation, 74
Courant, Richard, 23
Courant Institute, 287
Coxeter, H. S. M., 336, 339–340, 351
Cramer, Gabriel, 170
Cremona, Luigi, 277
Crunode, 260
Cubic equations
algebraic solutions, 57–62, 71, 72, 75, 76–77, 78, 79–80, 81, 105, 109, 111, 118–121, 123, 130
classification, 55
complex numbers in, 58, 61, 75, 77, 79
depressed (reduced), 58, 118–119, 123
Fibonacci’s analysis and solution, 69–70
Fiore–Tartaglia duel, 76–77, 80, 329
Greek solutions, 33, 40, 54–55
irreducible case, 61–62, 79, 327
permutation of general solutions, 118–120, 121, 123
proof of general solution, 62–63
roots of unity, 61, 109, 110, 111, 113, 119, 190, 215
symmetry of coefficients and solutions, 90, 120, 121, 202–203
trigonometric solution, 89
types (Pacioli’s classification), 75–78
Cuneiform
mathematical texts, 23, 24–26, 32
modern problem texts compared, 26–27
Plimpton 322 tablet, 24
reading, 13
writing, 21–23
Cyclic group of order n, 219
Cyclotomic integers, 112, 228–229
Cyclotomic points, 110, 111, 331
Cyril of Alexandria, 45
Cyrus the Great, 22
D
da Coi, Zuanne de Tonini, 76
da Vinci, Leonardo, 328–329, 343
Dardi of Pisa, 71
Dark Ages, 56
Darnley, Lord, 73
De Moivre’s theorem, 104
De Morgan, Augustus, 175, 177–178, 180, 181, 182–183, 185, 294, 338, 339
Decimal point, 97
Dedekind, Richard, 230, 231, 233, 235, 268, 340, 341
del Ferro, Scipione, 75–76, 82
Deligne, Pierre, 310
Descartes, René, 81, 91–94, 97, 106, 168, 178, 242, 255, 287, 338
Determinants, 188
adding, 171
in algebraic geometry, 245, 250
discovery, 168
interactions, 171
of matrices, 167, 172–173, 174, 245
multiplying, 171–172
in solving simultaneous linear equations, 168–169
Vandermonde, 117–118
Differential equations, 105, 185, 276, 285, 339
Differential geometry, 159
Dihedral groups, 219–220, 221, 271–272
Dilatations, 347
Dimensionality
fields, 199
multidimensional geometry, 185, 247, 248
n-dimensional algebras, 156
as topological invariant, 283, 284, 285
of vector space, 138–140, 144, 152–156, 158–159, 199, 335
Diocletian, 43
Diophantine analysis, 31, 39, 54
Diophantus, 31, 34–46, 39–41, 43, 49, 51, 56, 70, 83, 88, 93, 162, 224, 289, 314, 324, 328
Dirichlet, Lejeune, 224–225, 230
Disney, Walt, 335
Disquisitiones Arithmeticae, 112, 131, 172
Distributive law, 150
Divine Right of Kings, 333
Division
complex numbers, 13
rule of signs, 9
vectors, 144
Division algebra, 196
Duality concept, 351
E
École Preparatoire (Normale), 209–210
Edict of Milan, 43
Edict of Nantes, 85
Edward VI, King of England, 73
Edwards, Harold, 287
Effi Briest, 235
Eilenberg, Samuel, 302, 304, 307
Einstein, Albert, 236–237, 239–240, 268, 301, 343, 352
Eisenstein, Ferdinand Gotthold Max, 230
Electrical Age, 157
Electromagnetic field concept, 157
Ellipses, 241, 242–245, 289, 344
Equations.
See also Polynomial equations;
specific types of polynomial equations
defined, 37
theory of, 103–104
Euclid, 32–33, 76, 163, 322, 332, 343
Euler, Leonhard, 104–105, 106, 110, 113, 117, 122, 129, 130, 224, 226, 332, 336
Euler’s number, 244
Everest, George, 185
Extension fields, 198–199, 201–202, 204–205, 340–341, 351
F
Factorization
of cyclotomic integers, 229, 292
of integers, 234
non-unique, 299
polynomial equations, 11, 41, 111
zero vector, 159–160
Faraday, Michael, 157
Feit, Walter, 298
Fermat’s Last Theorem, 37–38, 40, 224–225, 227, 228, 297
Fertile Crescent, 19–20
Feuerbach, Karl, 255
Fibonacci, Leonardo, 65–71
Fibonacci sequence, 65–67, 327–328
Fields and field theory, 133, 332
addition table, 197
class, 299
closure rule, 196
commutativity, 196
dimensionality, 199
examples, 196
extension fields, 198–199, 201–202, 204–205, 340–341, 351
finite (Galois) fields, 196–198, 199, 203, 297
fraction field of rational numbers, 291
function fields, 2, 204–205, 231
multiplication tables, 202, 203
p-adic numbers, 291
permutations of solution fields, 202–203
rational-function field, 204–205, 231
rules, 196
solving equations with, 198–202, 340–341
as vector space, 199
Fields Medal, 309–310, 312, 352
Finite (Galois) fields, 196–198, 199, 203, 297
Finite groups, 219, 221–222, 271, 272, 275
Fiore, Antonio Maria, 75–77
Fitzgerald, Edward, 52
Flat plane, 13
Flatterland, 146
Fontane, Theodor, 235–236
Forgetful functor, 306
Foundations of Geometry, 294, 296
Foundations of mathematics, 181, 187
Fourier, Jean Baptiste Joseph, 105, 208, 209
Fractions, 9
Babylonian, 24–25
France, mathematical culture in, 81–82, 85–94, 117–118, 122–125, 178, 180, 208–209, 210, 231
Francis I, King of France, 85
Frank Nelson Cole Prize, 2, 298
Frederick II, Holy Roman Emperor, 65, 68–69
Frederick the Great, 104–105, 117, 122
Frege, Gottlob, 187
Frend, William, 179–180
Frost, Percival, 259
Function fields, 2, 204–205, 231
characteristic, 149
in differential equations, 276
theory of, 267–268, 281, 284, 305, 344
Functors, 301, 306, 307–308, 351
Fundamental theorem of algebra (FTA), 105–106, 264
proof of, 106–108
G
Galileo, 91
Galois, Évariste, 131, 154, 191, 195, 198, 202, 203, 206–207, 208–211, 218, 276, 288, 340
Galois theory, 89, 209, 212, 214–217, 276, 305
Gandy, Robin, 307
Gauss, Carl Friedrich, 36, 106, 112–113, 117, 126, 128, 131, 148, 159, 164, 172, 211, 224, 230, 231, 256, 258–259, 280, 292, 331, 332, 335, 337
Gaussian elimination, 163–164, 337
Gaussian integers, 226–227
Gaussian ring, 226–227
Gell-Mann, Murray, 316–317, 352
General theory of algebraic structures, 305–306
General theory of relativity, 159, 236–237, 268, 316
Geometry, Euclidean.
See also Algebraic geometry;
Analytical geometry;
Non-Euclidean geometry
ancient Greek approach to algebra, 32, 33, 88–89
Kant’s philosophy, 256–257, 344–345
of polytopes, 158–159
German, Sophie, 224
Germany
Cossists and Cossick art, 92–93, 329
mathematical culture in, 92–93, 129–130, 153–155, 179, 230–231, 235–239, 260–261, 301, 329
Nazi period, 235, 239, 292–293, 301
women’s status in, 235–236, 237
Ghaznavid dynasty, 53
Gibbon, Edward, 43, 44, 45, 324, 325
Gibbs, Josiah Willard, 157, 315
Girard, Albert, 90–91
Gödel, Kurt, 352
Goethe, Johann Wolfgang von, 179
Gordan, Paul, 261
Gordan’s problem, 261
Grassmann, Hermann Günther, 154–156, 157, 159, 316, 317
Grassmann algebras, 142, 154–155
Graves, John, 152–153
Great Quaternionic War, 158
Greek (ancient) mathematics, 10, 32–41, 56, 70, 324
Gregory, Duncan, 177, 185, 294, 338–339
Grotefend, Georg, 323
Grothendieck, Alexander, 299, 304, 308–314, 352
Groups and group theory, 3, 268
alternating group of index 2, 219
associativity, 212
Cayley tables, 189–191, 212, 213
closure, 212
commutative (Abelian), 214, 216, 341
continuous groups, 275–276
cyclic group of order n, 219
Erlangen program, 275–276
extensions, 302
finite groups, 219, 221–222, 271, 272, 275
founders, 132, 181, 187, 191, 270, 271
fundamental, 282–283, 284, 302, 348
Galois theory, 89, 209, 212, 214–217, 276
generators, 220–221
homology groups, 302–304
homotopy groups, 302, 304, 351
index of the subgroup, 215
invariants, 273–274
inverse elements, 212
isometries of Euclidean plane, 271–273
Lagrange’s theorem, 124, 125, 218
left and right cosets, 216
Lie group, 284, 297, 316–317, 347
normal subgroup, 215–216, 219, 221, 223, 305
permutations and, 132, 190–191, 202–203, 212, 213, 215, 216, 217–218, 221, 270
pth roots of unity, 213, 221, 228–229
simple groups, 221–222
Sylow p-subgroup, 218–219
symmetric group of order n!, 219
taxonomy, 219–222
in topology, 282–283, 284, 348
transformations, 219–220, 270, 275–276, 347
trivial, 283
unity in, 212
Grunwald, Eric, 319–320
Gupta dynasty, 47
Gustavus Adolphus, King of Sweden, 91, 94
H
Hamburg University, 301
Hamilton, John, 73
Hamilton, Sir William, 184
Hamilton, Sir William Rowan, 144, 148–152, 154, 155, 156, 157, 158, 174, 175–176, 184, 287, 315, 316, 317, 319, 334
Hamiltonian operator, 149
Harvard University, 297, 301, 350
Hasse, Helmut, 292
Heath, Thomas, 33
Heaviside, Oliver, 157, 158, 315
Heemskerck, Martin, 42
Heisenberg, Werner, 316
Heisenberg’s uncertainty principle, 334
Helmholtz, Herman Ludwig von, 230
Henry III, King of France, 86
Henry IV, King of France, 86, 87, 330
Heptadecagon, ruler-and-compass construction, 112
Hermite, Charles, 231
Herschel, John, 180
Hilbert, David, 234, 236–238, 261, 262, 264, 276, 277, 286, 289, 294, 295, 296, 297, 305, 315, 316, 317, 343
Hilbert’s Basis Theorem, 295, 345
Hindus, 47
Hinton, Charles Howard, 340
Hinton, James, 340
Hirst, Thomas, 175
Hitler, Adolph, 235
Holmboë, Bernt Michael, 128
Homogeneity, law of, 88–89, 91–92
Homogeneous coordinates, 153–154, 248, 251, 255, 259, 260, 345
Homology theory, 302–303, 305, 309
Hopf, Heinz, 348
L’Hôpital, Marquis de, 168
Housman, A. E., 52
Hugo, Victor, 206
l’Huilier, Simon, 284
Hurewicz, Witold, 351
Huxley, Aldous, 346
Hyksos dynasty, 29
Hyperbolas, 241, 256, 273, 344
Hypercomplex numbers, 160
Hyper-loops, 302
Hyper-mappings, 306
I
ibn Abd-al-Muttalib, uncle of Mohammed, 46
ibn al-’As, Amr, 46
ibn Qurra, Thabit, 51
Ideae mathematicae, 87
Ideal, 228, 231, 232–233, 238, 262–263, 264, 268, 305
Identity permutation, 100, 119
Indeterminate equations, 36–38, 39
Indians (Asian)
Industrial Revolution, 104, 181
Institut des Hautes Études Scientifiques (IHÉS), 308, 309, 310, 313
Institute for Advanced Study, 308
Integers (
)
division, 226
factorization, 234 5-adic, 289–290
in fundamental group of a torus, 282–283, 348
Gaussian, 226–227
Online Encyclopedia of Integer Sequences, 66
Integral domain, 306
International Congress of Mathematicians, 312
Intuitionism, 286–287, 348–349
Invariants, 181, 237, 243–244, 245, 250, 260–261, 273–274, 284, 285, 295, 305
Iran, 22.
See also Persians
Irrational numbers, 32, 198, 292
Irreducible equations, 201, 327
Isagoge, 88
Islam, 53.
See also Muslims
Isometries of Euclidean plane, 271–273
Italy, mathematical culture in, 65–80, 82–85, 277–278
J
Jacobean variety, 2
James II, King of England, 331
Japan, mathematical culture, 168, 169–170
al-Jayyani, Mohammed, 51
Jerrard, G. B., 130
Johannes of Palermo, 69
Johns Hopkins University, 296
Johnson, Art, 93
Jordan, Marie Ennemond Camille, 231, 270, 271, 273, 281
Jordan loops, 281–282
Journal of Pure and Applied Mathematics, 129, 341
K
Kähler, Erich, 318
Kant, Immanuel, 153, 256–257, 286, 287, 307, 344–345, 348–349
Kelvin, Lord (William Thomson), 158, 185
Kepler, Johannes, 344
Kepler’s laws, 171
Keratoid cusp, 260
Khayyam, Omar, 52, 53–54, 54–55, 56, 67, 69
al-Khwarizmi, 31, 46, 48–51, 52, 54, 67, 325
Kings College, Cambridge, 259
Kingsley, Charles, 324–325
Kizlik, S. B., 321
Klein, Felix, 147, 236–237, 257, 261–262, 271, 273, 275, 276, 277, 293, 294–295, 347
Klein 4-group, 214
Kneebone, G. T., 348
Kobori, Akira, 169
Kronecker, Leopold, 230, 287, 289, 331, 343
Kummer, Ernst Eduard, 228–230, 233, 258–259, 292
L
Lagrange, Joseph-Louis, 121–125, 127, 129, 130, 208, 332
Lagrange’s theorem, 124, 125, 215
Lamé, Gabriel, 225, 227, 228, 299
Lang, Serge, 298
Laplace, Pierre Simon, 208
Laplace’s equation, 105
Lasker, Emanuel, 234–235
Lasker–Noether theorem, 235
Laws of Thought, 186
Lawvere, F. William, 307
Layard, Austen Henry, 22
Leaning Tower of Pisa, 328
Lectures on Quaternions, 155
Lefschetz, Solomon, 283, 295, 296
Lefschetz’s fixed-point theorem, 295
Legendre, Adrien-Marie, 224–225
Leibniz, Gottfried Wilhelm von, 3, 94, 104, 106, 168, 179, 352
Leonardo of Pisa. See Fibonacci
Levi-Civita, Tullio, 277
Lie, Sophus, 269–271, 273, 275, 276, 284, 297, 346, 350
Lie group, 284, 297, 316–317, 347
Lindemann, Ferdinand von, 288
Line geometry, 251–252, 257, 270, 297
Linear dependence, 136–137, 336
Linear equations, finite fields applied to, 199–200
Linear extensions, theory of, 153–154
Linear functional, 142
Linear independence, 82, 136–139, 140, 141
Linear transformations, 142, 172
Lineland, 146
“Lines of force” concept, 157, 336
Liouville, Joseph, 211, 217, 218, 227, 228, 231
Lisker, Roy, 313–314
Listing, Johann Benedict, 280
Literal symbolism, 116.
See also Notation systems
and abstraction, 3
ancient Greek, 35–36, 38, 41–42, 56, 88, 93, 324, 328
Chinese, 169
Descartes’ contribution, 93, 97, 104, 132
in logic, 133
Viète’s contribution, 88, 93, 104, 132
zero, 38
Liu Bang, 162
Lobachevsky, Nikolai, 153, 255–256, 273
Logarithms, 97
Logic, algebraization of, 183–187
Longfellow, William Wadsworth, 335
Loop families, 282–283
Loop quantum gravity, 317
Lorentz group, 352
Lorentz transformation, 236, 316
Louis Philippe, King of France, 207–208, 209, 210
Luoxia Hong, 337
M
Mac Lane, Saunders, 299–301, 302, 304, 307, 350
al-Mamun, 48
Manifolds, 3, 268, 269, 276, 293, 297, 302, 303–304, 317–318, 348, 352
Maple, 254
Marinus, 324
Mary Queen of Scots, 73
Mathematica, 254
Mathematical Institute at Göttingen, 24, 292
Mathematical objects, 3, 167, 173, 321.
See also individual objects
Mathenauts, 334
addition and subtraction, 173
algebraic geometry and, 245, 250
algebras, 173
ancient Chinese origins, 162
applications, 315
complex numbers represented by, 173
for conic equation, 245
defined, 174
determinants, 167, 172–173, 174, 245
factorials, 165
Gaussian elimination, 163–164, 337
multiplication, 160, 173, 174, 337–338
product array, 171–172, 337–338
quaternions represented by, 158, 174
signs of terms, 165–166
Maxwell, James Clerk, 157
McColl, Hugh, 187
Mesopotamia, 20–21.
See also Babylonians
cuneiform mathematical texts, 23, 24–26, 32
history, 19, 20–21, 32, 52, 322–323
Metoposcopy, 73
Metric system of weights and measures, 122
Michael VII, Byzantine emperor, 328
Michel, Louis, 310
Michigan Papyrus, 36, 620
Mill, James, 339
Millennium Prize Problems, 283, 349
Mitchell, Charles William, 325
Moduli, law of, 150
Modulus
of bracketed triplet, 150
Mohammed, 46
Monasticism, 43
Mori, Sigeyosi, 169
M-theory, 317
al-Mulk, Nizam, 53–54
Multidimensional geometry, 185, 247, 248
Multiplication
associative rule, 153
complex numbers, 13, 84, 149–151, 173
determinants, 171–172
matrices, 160, 173, 174, 337–338
quadruplets, 151
rule of signs, 8–9
triplets, 150–151
Murray, Charles, 332
Muslims. See also Islam
Assassins, 326
Imams, 326
medieval mathematics, 46, 48, 49–51, 54, 56, 67, 70, 314
Shias, 46, 52, 53, 67, 325–326
Muwahid (Almohad) dynasty, 67
N
See Natural numbers.
Nahin, Paul, 158
Nakajima, Hiraku, 298
Napier, John, 97
Napoleonic Wars, 182, 230, 255–256, 339
Nash, John, 351
Natural equivalences, 304
Natural numbers (
)
Neal, John, 335
Nebuchadnezzar, 323
Negative numbers, 39, 54, 72, 79, 87
discovery and acceptance, 8, 27, 40, 83, 89, 94, 179–180
whole, 37
Nestorian heresy, 325
Neugebauer, Otto, 23–24, 27, 28, 30, 292
New Discoveries in Algebra, 90–91
Newman, James R., 30
Newton, Sir Isaac, 3, 91, 94, 97–99, 104, 105, 120, 168, 178, 179, 180, 181, 330–331, 332, 333, 338, 352
Newton’s theorem, 99, 102, 103
Niebuhr, Carsten, 323
Nietzsche, Friedrich Wilhelm, 286
Nightingale, Florence, 175
Nine Chapters on the Art of Calculation, 162, 163, 169
Noether, Emmy, 23, 234, 235–240, 261, 296, 297, 301, 316, 317, 351
Noncommutativity, 153, 157, 174, 191, 343, 338
quaternions, 152–153, 157, 174
Notation systems. See also Literal symbolism
algebraic geometry, 242, 245–246, 344
brackets, 84–85
calculus dots and d’s, 179, 180, 338
cycle notation for permutations, 188–191
decimal point, 97
Diophantine, 35–36, 38, 41, 70, 93, 324
Euclidean approach, 32–33
exponentiation, 93
multiplication sign, 97
Pacioli’s, 71
for permutations, 188–191
plus and minus signs, 72, 92, 329
in polynomials, 14–15
for powers, 71–72
square root sign, 93
Nullstellensatz (Zero Points Theorem), 262–264, 295, 345, 346
Number theory, 31, 51, 109, 114, 226, 289.
See also Algebraic number theory
Numbers and number systems. See also individual families
abstraction, 2–3
Arabic (Hindu) numerals, 47, 68, 70
closed under division, 9
closed under subtraction, 8
geometric representations, 92
million, 329
mnemonic, 7
nested Russian dolls model, 7–13
rule of signs, 8–9
O
Odoacer the Barbarian, 325
Omar (second Caliph), 46
Omayyad dynasty, 46
On Conoids and Spheroids, 33
Online Encyclopedia of Integer Sequences, 66
Orestes, Prefect of Egypt, 45
Origin
in complex plane, 13
in vector space, 134
Othman (third Caliph), 46
Oughtred, William, 97
P
Pacioli, Luca, 71, 75, 328–329
p-Adic numbers, 289–292, 306, 349
Pasch, Moritz, 293–294
Pazzi, Antonio Maria, 83
Peacock, George, 177, 180–181, 182, 294, 302
Peirce, Charles Sanders, 187
Pentatope, 351
Perelman, Grigory, 283
Permutations
cubic equations, 118–120, 121, 123
cycle notation, 188–191
even and odd, 166–167
and group theory, 132, 190–191, 202–203, 212, 213, 215, 216, 217–218, 221, 270
identity, 100, 119, 188, 203, 341
quadratic equations, 118
of solution fields, 202–203
solving equations using, 118–121, 122–124, 130, 203, 217–218
structure of groups, 218
Persians, 45, 46, 47, 48, 52, 53, 325
Petrie, John Flinders, 336
Petsinis, Tom, 206
Phillip II of Spain, 85, 86–87
Philosophical Society of Cambridge, 181
Physics, applications of algebra to, 299
Plane curves, 257
The Planiverse, 146
Platonic solids, 351
Plotinus, 324
Plücker, Julius, 251, 255, 257, 259, 270, 277, 297
Poincaré, Henri, 281–282, 283, 284, 285, 289, 302
Pointland, 146
Points at infinity, 247, 248, 344
Poisson, Siméon-Denis, 210
Poitiers University, 91
Polynomial equations
completion and reduction, 50–51
expansion and factorization, 11, 41, 111
FTA and, 105–106
nth-degree, 117
rational-number solutions, 41, 289
symmetries of solutions, 89–90, 103–104, 118, 119–120
Polynomials
coefficients (givens), 14-15
composition of quadratic forms, 131
defined, 14
Diophantine analysis, 39
elementary symmetric, 89–90, 101–103
etymology, 13
importance in algebra, 15
literal symbolism, 14–15
partially symmetric, 120
powers of unknowns, 14
properties, 225
recipe for, 15
unknowns (data), 14
vector space, 140–141, 142, 144
Polytopes, 158–159
Poncelet, Jean-Victor, 254–255, 256, 277, 309
Posets, 301
Fermat’s Last Theorem, 225, 226, 228, 230
finite fields for, 197
Grothendieck’s, 310–311
irregular, 342
p-adic numbers, 289–292, 306, 349
powers of, 234
Princeton University, 295, 296, 297
Projective geometry, 247–248, 255, 256, 270, 273, 293
Projective plane, 249–250
Psellus, Michael, 328
Ptolemy, 33
Pythagoras’s theorem, 13, 24, 322, 327
Pythagorean triples, 24
Q
See Rational numbers.
Quadratic equations
algebraic solution, 57, 58, 60–61, 64, 79, 118, 120, 323
Diophantus’s solution, 38–39
Euclidean Propositions 28 and 29, 32–33
field theory applied to, 199–201, 340–341
irreducible, 201, 327, 340–341
al-Khwarizmi’s solutions, 49
symmetry of solutions, 89–90, 118
Quadratic polynomials, zero set of, 242
Quadruplets, 151
quaesita (“things sought”), 14, 88
Quantum theory, 149
Quartic equations, 40
algebraic solution, 62–63, 75, 80, 81, 104, 105, 115, 116
symmetry of coefficients and solutions, 90
Quaternion group, 221
Quaternions, 144, 154, 156, 315, 336
matrix representation of, 174
noncommutativity, 152–153, 157, 174
Queen’s College, Cork, 185
Quintic equations
algebraic solution, 64, 103–104, 125, 130–131
elementary symmetric polynomials in, 90, 103
numerical solution, 115
proving unsolvability of general equation, 116, 117, 125, 126–130, 222
severely depressed, 333
R
See Real numbers.
Rabbit number problem, 66–67, 68
Raleigh, Walter, 94
Ramphoid cusp, 260
Rational expressions, 15
Rational function, 204–205, 231, 332
Rational numbers (
), 37, 39, 41
completion of, 292
fraction field of, 291
properties, 9, 10, 196, 288, 322
Real line, 11
Real numbers (
)
as an algebra, 160
discovery, 10
as “honorary” complex numbers, 12, 106
as points, 148
properties, 10–11, 12, 196, 322
Recorde, Robert, 329
Regular Polytopes, 336, 339–340, 351
Representation, 299
Resolvent equations, 123–124, 126
Rhind, A. Henry, 29
Riccati equation, 336
Ridler, Ann, 334–335
Riemann, Bernhard, 159, 230, 231, 265, 267–268, 273, 277, 281, 293, 297, 305, 316, 318, 348
Riemann hypothesis, 333–334
Riemann sphere, 344
Riemann surfaces, 265–267, 281, 346, 348
Riemann–Roch theorem, 268
Rig Veda, 156
Rings and ring theory, 133, 276
of complex numbers, 226, 233, 260, 264
defined, 226
Fermat’s Last Theorem and, 224–225, 226, 229
of 5-adic integers, 290–291
Gaussian ring, 226–227
ideal, 228, 231, 232–233, 238, 262–263, 264, 268, 305
internal structure, 233–234, 238, 260–261, 262–263
invariants, 305
Lasker ring, 234–235
primary ideal, 234–235
principal ideal, 233
properties, 226, 227, 232, 342
unique factorization in, 227, 228, 229
Roch, Gustav, 346
Roots of unity
complex numbers, 109–114
cube, 61, 109, 110, 111, 113, 119, 190, 215
nth, 109–110, 111, 113–114, 331, 332
primitive nth, 113–114, 331–332
properties, 113
seventeenth, 112
Rosenlicht, Maxwell A., 298
Royal Society, 98, 125, 185, 259, 331, 332
Royal Swedish Academy of Sciences, 312
Rubaiyat, 52
Rucker, Rudy, 146–147
Ruffini, Paolo, 116, 126–127, 129, 154, 333
Rule of signs, 8–9, 11, 40–41, 59–60, 83, 84
Russell, Bertrand, 186–187, 286, 324, 351
S
Sabbah, Hassan, 54
Saint-Venant, Jean Claude, 155
Salmon, George, 259–260
Scalar product, 142
Scalars, 134
Schläfli, Ludwig, 158–159
Seljuk, 53
Serge, Victor, 311
Sets and set theory, 187, 213, 231, 233, 264, 287, 301
“Sevener” Shiites, 326
Shang Yang, 162–163
Shing-tung Yau, 318
Simultaneous linear equations, 40, 161, 163–164, 166, 168–169, 170–171
Solvability, 299
Space–time, 335–336
Special theory of relativity, 236, 250–251, 316
Sphereland, 146
Spinode, 260
Square root function, 265, 267
Squaring function, 265–266, 267
St. Bartholomew’s Eve massacre, 86
St. Petersburg Academy of Sciences, 255
Stalin, Joseph, 235
Steinitz, William, 234
Stevin, Simon, 342
Stewart, Ian, 146
Stott, Alicia Boole, 185, 339–340
Subtraction, 8
complex numbers, 13
Sumerian language and mathematics, 21, 28
Supersymmetric string theory, 317
Suslin, Andrei, 298
Swan, Richard G., 5
Sylow, Ludwig, 217–218, 269, 270
Sylow p-subgroup, 218–219
Sylvester, J. J., 174, 175, 181, 260, 317
Symmetric functions, 90, 120, 121, 333, 336
Symmetry
in algebraic geometry, 248, 250, 251
of coefficients and solutions in polynomial equations, 90, 120, 121, 202–203
group of order n!, 219
principles, 168–169
Synthetic geometry, 255, 344–345
T
Tartaglia, Nicolo, 76–80
Tensors, 82, 142, 159, 277, 316
Thompson, John G., 298
The Time Machine, 147
Topology. See also Algebraic topology
video on, 344
Transcendental numbers, 288
Transformations
affine, 250
in algebraic geometry, 250–251, 271–273
groups, 219–220, 270, 275–276, 347
Lie group, 347
Möbius, 251
topological, 250
Treaty of Cateau-Cambrésis, 85
Trilinear coordinates, 260
Trinity College, Cambridge, 174, 180, 182
Trinity College, Dublin, 149
Triplets
an algebra for, 150–151
permutation, 166
“Twelver” Shiites, 326
U
Universal algebra, 351
Universal constructions, 300
University College London, 181–182
Universities
Bologna, 75
Bonn, 257
Chicago, 5
Christiana (Kristiana, Oslo), 128, 217, 269
Göttingen, 234, 236–239, 261–262, 265, 270, 271, 280, 294, 316, 323
Heidelberg, 234
Königsberg, 294
Minnesota, 344
Montpelier, 313
São Paolo, 296
St. Andrews (and math website), 332
Tübingen, 156
Virginia, 175
Unknown quantity
in polynomials, 14
Sumerian, 28
Unramified class field theory, 2
V
Van der Waerden, B. L., 288, 301
van Roomen, Adriaan, 87
Vandermonde, Alexandre-Théophile, 117–118, 121, 122, 123, 130, 332
Variety concept, 263–264
Vector analysis, 157
Vector space, 133
abstract, 159
algebras, 142, 143–144, 154, 157, 347
attaching to a manifold, 304
complex numbers as, 143–144
dimension of, 138–140, 144, 154, 199
extended field as, 199
four-dimensional, 152–156, 335
inner (scalar) product, 142
linear dependence and independence, 82, 136–139, 141, 154
linear functional, 142
linear transformations, 142
matrices, 173
n-dimensional, 158–159
pair mapping, 142
polynomial representations, 140–141, 142, 144
subspace, 154
Vectors
dividing, 144
factorization of zero vector, 159–160
multiplying by scalars, 135, 141
multiplying by vectors, 143–144, 154, 347
Venn, John, 186
Vesalius, Andreas, 73
Viète, François, 13, 81, 85–91, 92, 94, 105, 120
Voevodsky, Vladimir, 310
W
Wallis, John, 97
Waring, Edward, 333
Wedderburn, Joseph Henry Maclagen, 160
Weierstrass, Karl, 160, 231, 293, 343
Weil, André, 296–297, 309, 310, 350
Wells, H. G., 147
Wesson, Robert G., 20
Whiston, William, 99
Widman, Johannes, 72
Wiener, Hermann, 294
Wiener, Norbert, 239
Wigner, Eugene, 315
Wilhelm II, German emperor (Kaiser), 235
Wittgenstein, Ludwig, 23
World War I, 237
X
Xuan-zang, 47
Y
Yale University, 24
Z
See Integers.
Zariski, Oscar, 295–296, 297, 310, 318
Zero
constant term in polynomials, 107
countability, 322
division by, 11
position marker, 32